دانلود مقاله انگلیسی رایگان:آینده ارزیابی جنبش عمومی: نقش بینایی رایانه و یادگیری ماشین - مروری بر محدوده - 2021
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review
    The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    The future of General Movement Assessment: The role of computer vision and machine learning – A scoping review


    ترجمه فارسی عنوان مقاله:

    آینده ارزیابی جنبش عمومی: نقش بینایی رایانه و یادگیری ماشین - مروری بر محدوده


    منبع:

    Sciencedirect - Elsevier - Research in Developmental Disabilities, 110 (2021) 103854: doi:10:1016/j:ridd:2021:103854


    نویسنده:

    Nelson Silva


    چکیده انگلیسی:

    Background: The clinical and scientific value of Prechtl general movement assessment (GMA) has been increasingly recognised, which has extended beyond the detection of cerebral palsy throughout the years. With advancing computer science, a surging interest in developing automated GMA emerges. Aims: In this scoping review, we focused on video-based approaches, since it remains authentic to the non-intrusive principle of the classic GMA. Specifically, we aimed to provide an overview of recent video-based approaches targeting GMs; identify their techniques for movement detection and classification; examine if the technological solutions conform to the fundamental concepts of GMA; and discuss the challenges of developing automated GMA. Methods and procedures: We performed a systematic search for computer vision-based studies on GMs. Outcomes and results: We identified 40 peer-reviewed articles, most (n = 30) were published between 2017 and 2020. A wide variety of sensing, tracking, detection, and classification tools for computer vision-based GMA were found. Only a small portion of these studies applied deep learning approaches. A comprehensive comparison between data acquisition and sensing setups across the reviewed studies, highlighting limitations and advantages of each modality in performing automated GMA is provided. Conclusions and implications: A “method-of-choice” for automated GMA does not exist. Besides creating large datasets, understanding the fundamental concepts and prerequisites of GMA is necessary for developing automated solutions. Future research shall look beyond the narrow field of detecting cerebral palsy and open up to the full potential of applying GMA to enable an even broader application.
    Keywords: Augmented general movement assessment | Automation | Cerebral palsy | Computer vision | Deep learning | Developmental disorder | Early detection | General movements | Infancy | Machine learning | Neurodevelopment | Pose estimation


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 3059 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi