دانلود مقاله انگلیسی رایگان:معماری عصبی چشم انداز بدون نظارت با توجه از بالا به پایین - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Unsupervised foveal vision neural architecture with top-down attention Unsupervised foveal vision neural architecture with top-down attention
    Unsupervised foveal vision neural architecture with top-down attention

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Unsupervised foveal vision neural architecture with top-down attention


    ترجمه فارسی عنوان مقاله:

    معماری عصبی چشم انداز بدون نظارت با توجه از بالا به پایین


    منبع:

    Sciencedirect - Elsevier - Neural Networks, 141 (2021) 145-159: doi:10:1016/j:neunet:2021:03:003


    نویسنده:


    چکیده انگلیسی:

    Deep learning architectures are an extremely powerful tool for recognizing and classifying images. However, they require supervised learning and normally work on vectors of the size of image pixels and produce the best results when trained on millions of object images. To help mitigate these issues, we propose an end-to-end architecture that fuses bottom-up saliency and top-down attention with an object recognition module to focus on relevant data and learn important features that can later be fine- tuned for a specific task, employing only unsupervised learning. In addition, by utilizing a virtual fovea that focuses on relevant portions of the data, the training speed can be greatly improved. We test the performance of the proposed Gamma saliency technique on the Toronto and CAT 2000 databases, and the foveated vision in the large Street View House Numbers (SVHN) database. The results with foveated vision show that Gamma saliency performs at the same level as the best alternative algorithms while being computationally faster. The results in SVHN show that our unsupervised cognitive architecture is comparable to fully supervised methods and that saliency also improves CNN performance if desired. Finally, we develop and test a top-down attention mechanism based on the Gamma saliency applied to the top layer of CNNs to facilitate scene understanding in multi-object cluttered images. We show that the extra information from top-down saliency is capable of speeding up the extraction of digits in the cluttered multidigit MNIST data set, corroborating the important role of top down attention.© 2021 Elsevier Ltd. All rights reserved.
    Keywords: Unsupervised Learning | Foveal vision | Top-down saliency | Deep learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 15
    حجم فایل: 1859 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi