دانلود مقاله انگلیسی رایگان:راهنمای حاشیه نویسی ویدئوی حین عمل جراحی مغز و اعصاب برای تجزیه و تحلیل یادگیری ماشین و بینایی ماشین - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision
    A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    A Guide to Annotation of Neurosurgical Intraoperative Video for Machine Learning Analysis and Computer Vision


    ترجمه فارسی عنوان مقاله:

    راهنمای حاشیه نویسی ویدئوی حین عمل جراحی مغز و اعصاب برای تجزیه و تحلیل یادگیری ماشین و بینایی ماشین


    منبع:

    Sciencedirect - Elsevier - World Neurosurgery, 150 (2021) 26-30: doi:10:1016/j:wneu:2021:03:022


    نویسنده:

    Dhiraj J. Pangal


    چکیده انگلیسی:

    - OBJECTIVE: Computer vision (CV) is a subset of artificial intelligence that performs computations on image or video data, permitting the quantitative analysis of visual information. Common CV tasks that may be relevant to surgeons include image classification, object detection and tracking, and extraction of higher order features. Despite the potential applications of CV to intraoperative video, however, few surgeons describe the use of CV. A primary roadblock in implementing CV is the lack of a clear workflow to create an intraoperative video dataset to which CV can be applied. We report general principles for creating usable surgical video datasets and the result of their applications.
    - METHODS: Video annotations from cadaveric endoscopic endonasal skull base simulations (n [ 20 trials of 1e5 minutes, size [ 8 GB) were reviewed by 2 researcher annotators. An internal, retrospective analysis of workflow for development of the intraoperative video annotations was performed to identify guiding practices.
    - RESULTS: Approximately 34,000 frames of surgical video were annotated. Key considerations in developing annotation workflows include 1) overcoming software and personnel constraints; 2) ensuring adequate storage and access infrastructure; 3) optimization and standardization of annotation protocol; and 4) operationalizing annotated data. Potential tools for use include CVAT (Computer Vision Annotation Tool) and Vott: open-sourced annotation software allowing for local video storage, easy setup, and the use of interpolation.
    - CONCLUSIONS: CV techniques can be applied to surgical video, but challenges for novice users may limit adoption. We outline principles in annotation workflow that can mitigate initial challenges groups may have when converting raw video into useable, annotated datasets.
    Key words: Artificial intelligence | Computer vision | Intraoperative video | Machine learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 5
    حجم فایل: 596 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi