دانلود مقاله انگلیسی رایگان:رادیومیک سنتی مبتنی بر MRI و نام نگاری رایانه ای برای پیش بینی تهاجم فضایی لنفاوی در سرطان آندومتر - 2021
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • MRI-based traditional radiomics and computer-vision nomogram for predicting lymphovascular space invasion in endometrial carcinoma MRI-based traditional radiomics and computer-vision nomogram for predicting lymphovascular space invasion in endometrial carcinoma
    MRI-based traditional radiomics and computer-vision nomogram for predicting lymphovascular space invasion in endometrial carcinoma

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    MRI-based traditional radiomics and computer-vision nomogram for predicting lymphovascular space invasion in endometrial carcinoma


    ترجمه فارسی عنوان مقاله:

    رادیومیک سنتی مبتنی بر MRI و نام نگاری رایانه ای برای پیش بینی تهاجم فضایی لنفاوی در سرطان آندومتر


    منبع:

    Sciencedirect - Elsevier - Diagnostic and Interventional Imaging, 102 (2021) 455-462: doi:10:1016/j:diii:2021:02:008


    نویسنده:

    Ling Long


    چکیده انگلیسی:

    Purpose: To determine the capabilities of MRI-based traditional radiomics and computer-vision (CV) nomogram for predicting lymphovascular space invasion (LVSI) in patients with endometrial carcinoma (EC).
    Materials and methods: A total of 184 women (mean age, 52.9 ± 9.0 [SD] years; range, 28–82 years) with EC were retrospectively included. Traditional radiomics features and CV features were extracted from preoperative T2-weighted and dynamic contrast-enhanced MR images. Two models (Model 1, the radiomics model; Model 2, adding CV radiomics signature into the Model 1) were built. The performance of the models was evaluated by the area under the curve (AUC) of the receiver operator characteristic (ROC) in the training and test cohorts. A nomogram based on clinicopathological metrics and radiomics signatures was developed. The predictive performance of the nomogram was assessed by AUC of the ROC in the training and test cohorts.
    Results: For predicting LVSI, the AUC values of Model 1 in the training and test cohorts were 0.79 (95% confidence interval [CI]: 0.702–0.889; accuracy: 65.9%; sensitivity: 88.8%; specificity: 57.8%) and 0.75 (95% CI: 0.585–0.914; accuracy: 69.5%; sensitivity: 85.7%; specificity: 62.5%), respectively. The AUC values of Model 2 in the training and test cohorts were 0.93 (95% CI: 0.875–0.991; accuracy: 94.9%; sensitivity: 91.6%; specificity: 96.0%) and 0.81 (95% CI: 0.666–0.962; accuracy: 71.7%; sensitivity: 92.8%; specificity: 62.5%), respectively. The discriminative ability of Model 2 was significantly improved compared to Model 1 (Net Reclassification Improvement [NRI] = 0.21; P = 0.04). Based on histologic grade, FIGO stage, Radscore and CV-score, AUC values of the nomogram to predict LVSI in the training and test cohorts were 0.98 (95% CI: 0.955–1; accuracy: 91.6%; sensitivity: 91.6%; specificity: 96.0%) and 0.92 (95% CI: 0.823–1; accuracy: 91.3%; sensitivity: 78.5%; specificity: 96.8%), respectively.
    Conclusions: MRI-based traditional radiomics and computer-vision nomogram are useful for preoperative risk stratification in patients with EC and may facilitate better clinical decision-making.
    Keywords: Uterus | Endometrial neoplasm | Magnetic resonance imaging | Nomogram | Computer vision


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 8
    حجم فایل: 986 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi