دانلود مقاله انگلیسی رایگان:استفاده از یادگیری ماشین و بینایی ماشین برای برآورد سرعت زاویه ای توربین های بادی در شبکه های هوشمند از راه دور - 2021
دانلود بهترین مقالات isi همراه با ترجمه فارسی
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely
    Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely

    سال انتشار:

    2021


    عنوان انگلیسی مقاله:

    Using machine learning and computer vision to estimate the angular velocity of wind turbines in smart grids remotely


    ترجمه فارسی عنوان مقاله:

    استفاده از یادگیری ماشین و بینایی ماشین برای برآورد سرعت زاویه ای توربین های بادی در شبکه های هوشمند از راه دور


    منبع:

    Sciencedirect - Elsevier - Energy Reports, Corrected proof: doi:10:1016/j:egyr:2021:07:077


    نویسنده:


    چکیده انگلیسی:

    Today, power generation from clean and renewable resources such as wind and solar is of great salience. Smart grid technology efficiently responds to the increasing demand for electric power. Intelligent monitoring, control, and maintenance of wind energy facilities are indispensable to increase the performance and efficiency of smart grids (SGs). Integration of state-of-the-art machine learning algorithms and vision sensor networks approaches pave the way toward enhancing the wind farms’ performance. The generating power in a wind turbine farm is the most critical parameter that should be measured accurately. Produced power is highly related to weather patterns, and a new farm in a near area is also likely to have similar energy generation. Therefore, accurate and perpetual prediction models of the existing wind farms can be led to develop new stations with lower costs. The paper aims to estimate the angular velocity of turbine blades using vision sensors and signal processing. The high wind in the wind farm can cause the camera to vibrate in successive frames, and the noise in the input images can also strengthen the problem. Thanks to couples of solid computer vision algorithms, including FAST (Features from Accelerated Segment Test), SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features), BF (Brute-Force), FLANN (Fast Library for Approximate Nearest Neighbors), AE (Autoencoder), and SVM (support vector machines), this paper accurately localizes the Hub and track the presence of the Blade in consecutive frames of a video stream. The simulation results show that determining the hub location and the blade presence in sequential frames results in an accurate estimation of wind turbine angular velocity with 95.36% accuracy.© 2021 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).
    Keywords: Machine vision | Blade detection | Image classification | Signal processing | Wind turbine | Smart grids


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 16
    حجم فایل: 2882 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi