با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت مقاله خود را دریافت کنید (تا مشکل رفع گردد). با تشکر از صبوری شما!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
دسته بندی:
حسابداری و حسابرسی - accounting and auditing
سال انتشار:
2021
عنوان انگلیسی مقاله:
A real-time deep-learning approach for filtering Arabic low-quality content and accounts on Twitter
ترجمه فارسی عنوان مقاله:
یک رویکرد یادگیری عمیق در زمان واقعی برای فیلتر کردن عربی با کیفیت پایین محتوا و حساب های کاربری در توییتر
منبع:
ScienceDirect- Elsevier- Information Systems, 99 (2021) 101740: doi:10:1016/j:is:2021:101740
نویسنده:
None
چکیده انگلیسی:
Social networks have generated immense amounts of data that have been successfully utilized
for research and business purposes. The approachability and immediacy of social media have also
allowed ill-intentioned users to perform several harmful activities that include spamming, promoting,
and phishing. These activities generate massive amounts of low-quality content that often exhibits
duplicate, automated, inappropriate, or irrelevant content that subsequently affects users’ satisfaction
and imposes a significant challenge for other social media-based systems. Several real-time systems
were developed to tackle this problem by focusing on filtering a specific kind of low-quality content. In
this paper, we present a fine-grained real-time classification approach to identify several types of lowquality tweets (i.e., phishing, promoting, and spam tweets) written in Arabic. The system automatically
extracts textual features using deep learning techniques without relying on hand-crafted features that
are often time-consuming to be obtained and are tailored for a single type of low-quality content.
This paper also proposes a lightweight model that utilizes a subset of the textual features to identify
spamming Twitter accounts in a real-time setting. The proposed methods are evaluated on a real-world
dataset (40, 000 tweets and 1, 000 accounts), showing superior performance in both models with
accuracy and F1-scores of 0.98. The proposed system classifies a tweet in less than five milliseconds
and an account in less than a second.
keywords: محتوای کم کیفیت در شبکه های اجتماعی | حساب های اسپم | سیستم تشخیص زمان واقعی | تکنیک های یادگیری عمیق | Low-quality content in social networks | Spam accounts | Real-time detection system | Deep learning techniques
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0