دانلود مقاله انگلیسی رایگان:نگاشت چند هستی شناسی شبکه متخاصم مولد در اینترنت اشیا برای تراز هستی شناسی - 2022
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی اینترنت اشیاء رایگان
  • Multi-Ontology Mapping Generative Adversarial Network in Internet of Things for Ontology Alignment Multi-Ontology Mapping Generative Adversarial Network in Internet of Things for Ontology Alignment
    Multi-Ontology Mapping Generative Adversarial Network in Internet of Things for Ontology Alignment

    دسته بندی:

    اینترنت اشیاء - Internet of Things


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Multi-Ontology Mapping Generative Adversarial Network in Internet of Things for Ontology Alignment


    ترجمه فارسی عنوان مقاله:

    نگاشت چند هستی شناسی شبکه متخاصم مولد در اینترنت اشیا برای تراز هستی شناسی


    منبع:

    ScienceDirect- Elsevier- Internet of Things Available online 13 September 2022, 100616


    نویسنده:

    Varun M Tayur


    چکیده انگلیسی:

    On the Semantic web, ontologies are thought to be the remedy to data heterogeneity, and correlating ontologies is a highly effective technique. Although the use of representation learning approaches to a variety of applications has showed significant promise, they have had little effect on the issue of ontology matching and classification. In order to establish alignments between two ontologies, this research presents the Multi-Ontology Mapping Generative Adversarial Network in Internet of Things (MOMGANI). For the instance of ontology mapping, we suggest using a two-system representation learning network consisting of a Generator and Discriminator. The Generator applies a probabilistic softmax classifier to the different Name, Label, Comments, Properties, Instance descriptions, concept characteristics, and the neighbourhood concepts for each of the ontologys properties. In order to support the assertions that the Generator has generated, the Discriminator network employs a novel Bidirectional Long Short-Term Memory (Bi-LSTM network) with an Ontology Attention mechanism enhanced by the concept’s descriptions. As a result, both systems are in a feedback mechanism where they can learn from one another. The system will produce a set of triples that list all the associated concepts from various ontologies as its final product. Domain experts will review these triples outside of the band to ensure that only true concepts and triples are chosen for the alignment. In comparison to using the ontologies separately, the aligned ontology enables extended querying and inference across related ontologies and domains. Considering metrics like recall, precision, and F-measure, the experimental evaluation was performed utilizing the datasets for classes alignment, property alignment, and instances alignment. The proposed architecture provides a recall, precision, and F-measure of 0.92, 0.99, and 0.83 respectively which reveals that this model outperforms the traditional methods.
    Keywords: Generative adversarial network | Ontology alignment | IoT and OntoGenerator and OntoLSTM


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 26
    حجم فایل: 1052 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 882 :::::::: بازدید دیروز: 9785 :::::::: بازدید کل: 24800 :::::::: افراد آنلاین: 33