با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت مقاله خود را دریافت کنید (تا مشکل رفع گردد). با تشکر از صبوری شما!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
دسته بندی:
اینترنت اشیاء - Internet of Things
سال انتشار:
2022
عنوان انگلیسی مقاله:
Resource Allocation in Time Slotted Channel Hopping (TSCH) Networks Based on Phasic Policy Gradient Reinforcement Learning
ترجمه فارسی عنوان مقاله:
تخصیص منابع در شبکه های گام کانال با شکاف زمانی (TSCH) بر اساس یادگیری تقویت گرادیان خط مشی فازی
منبع:
ScienceDirect- Elsevier- Internet of Things, 19 (2022) 100522: doi:10:1016/j:iot:2022:100522
نویسنده:
Lokesh Bommisetty
چکیده انگلیسی:
The concept of the Industrial Internet of Things (IIoT) is gaining prominence due to its lowcost solutions and improved productivity of manufacturing processes. To address the ultra-high
reliability and ultra-low power communication requirements of IIoT networks, Time Slotted
Channel Hopping (TSCH) behavioral mode has been introduced in IEEE 802.15.4e standard.
Scheduling the packet transmissions in IIoT networks is a difficult task owing to the limited
resources and dynamic topology. In IEEE 802.15.4e TSCH, the design of the schedule is open
to implementation. In this paper, we propose a phasic policy gradient (PPG) based TSCH
schedule learning algorithm. We construct the utility function that accounts for the throughput,
and energy efficiency of the TSCH network. The proposed PPG based scheduling algorithm
overcomes the drawbacks of totally distributed and totally centralized deep reinforcement
learning-based scheduling algorithms by employing the actor–critic policy gradient method that
learns the scheduling algorithm in two phases, namely policy phase and auxiliary phase. In
this method, we show that the schedule converges quickly compared to any other actor–critic
method and also improves the system throughput performance by 58% compared to the minimal
scheduling function, a default TSCH schedule.
Keywords: Industrial internet of things | IEEE 802.15.4e | Time slotted channel hopping | Deep reinforcement learning | Actor–critic policy gradient methods | Phasic policy gradient
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0