دانلود مقاله انگلیسی رایگان:روش های عمیق بدون نظارت برای تجزیه و تحلیل رفتار در داده های حسگر همه جا حاضر - 2022
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی اینترنت اشیاء رایگان
  • Deep unsupervised methods towards behavior analysis in ubiquitous sensor data Deep unsupervised methods towards behavior analysis in ubiquitous sensor data
    Deep unsupervised methods towards behavior analysis in ubiquitous sensor data

    دسته بندی:

    اینترنت اشیاء - Internet of Things


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Deep unsupervised methods towards behavior analysis in ubiquitous sensor data


    ترجمه فارسی عنوان مقاله:

    روش های عمیق بدون نظارت برای تجزیه و تحلیل رفتار در داده های حسگر همه جا حاضر


    منبع:

    ScienceDirect- Elsevier- Internet of Things, 17 (2022) 100486: doi:10:1016/j:iot:2021:100486


    نویسنده:

    Manan Sharma


    چکیده انگلیسی:

    Behavioral analysis (BA) on ubiquitous sensor data is the task of finding the latent distribution of features for modeling user-specific characteristics. These characteristics, in turn, can be used for a number of tasks including resource management, power efficiency, and smart home applications. In recent years, the employment of topic models for BA has been found to successfully extract the dynamics of the sensed data. Topic modeling is popularly performed on text data for mining inherent topics. The task of finding the latent topics in textual data is done in an unsupervised manner. In this work we propose a novel clustering technique for BA which can find hidden routines in ubiquitous data and also captures the pattern in the routines. Our approach efficiently works on high dimensional data for BA without performing any computationally expensive reduction operations. We evaluate three different techniques namely Latent Dirichlet Allocation (LDA), the Non-negative Matrix Factorization (NMF), and the Probabilistic Latent Semantic Analysis (PLSA) for comparative study. We have analyzed the efficiency of the methods by using performance indices like perplexity and silhouette on three real-world ubiquitous sensor datasets namely, the Intel Lab, Kyoto, and MERL. Through rigorous experiments, we achieve silhouette scores of 0.7049 over the Intel Lab dataset, 0.6547 over the Kyoto dataset, and 0.8312 over the MERL dataset for clustering. In these cases, however, it is di cult to validate the results obtained as the datasets do not contain any ground truth information. Towards that, we investigate a self- supervised method that will be capable of capturing the inherent ground truths that are avail- able in the dataset. We design a self-supervised technique which we apply on datasets containing ground truth and also without. We see that our performance on data without ground truth differs from that with ground truth by approximately 8% (F-score) hence showing the efficacy of self- supervised techniques towards capturing ground truth information.
    keywords: تحلیل داده های فراگیر | تحلیل رفتار | یادگیری خود نظارتی | Ubiquitous data analysis | Behavior analysis | Self supervised learning


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 23
    حجم فایل: 2896 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 4450 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 4450 :::::::: افراد آنلاین: 41