دسته بندی:
بینایی ماشین - Machine vision
سال انتشار:
2022
عنوان انگلیسی مقاله:
Image2Triplets: A computer vision-based explicit relationship extraction framework for updating construction activity knowledge graphs
ترجمه فارسی عنوان مقاله:
Image2Triplets: چارچوب استخراج رابطه صریح مبتنی بر بینایی ماشین برای به روز رسانی نمودارهای دانش فعالیت های ساخت
منبع:
ScienceDirect- Elsevier- Computers in Industry, 137 (2022) 103610: doi:10:1016/j:compind:2022:103610
نویسنده:
Zaolin Pan
چکیده انگلیسی:
Knowledge graph (KG) is an effective tool for knowledge management, particularly in the architecture,
engineering and construction (AEC) industry, where knowledge is fragmented and complicated. However,
research on KG updates in the industry is scarce, with most current research focusing on text-based KG
updates. Considering the superiority of visual data over textual data in terms of accuracy and timeliness, the
potential of computer vision technology for explicit relationship extraction in KG updates is yet to be ex-
plored. This paper combines zero-shot human-object interaction detection techniques with general KGs to
propose a novel framework called Image2Triplets that can extract explicit visual relationships from images
to update the construction activity KG. Comprehensive experiments on the images of architectural dec-
oration processes have been performed to validate the proposed framework. The results and insights will
contribute new knowledge and evidence to human-object interaction detection, KG update and construc-
tion informatics from the theoretical perspective.
© 2022 Elsevier B.V. All rights reserved.
keywords: یادگیری شات صفر | تشخیص تعامل انسان و شی | بینایی ماشین| استخراج رابطه صریح | نمودار دانش | Zero-shot learning | Human-object interaction detection | Computer vision | Explicit relationship extraction | Knowledge graph
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0