دانلود مقاله انگلیسی رایگان:پایش فنولوژی محصول با تصاویر سطح خیابان با استفاده از بینایی ماشین - 2022
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Monitoring crop phenology with street-level imagery using computer vision Monitoring crop phenology with street-level imagery using computer vision
    Monitoring crop phenology with street-level imagery using computer vision

    دسته بندی:

    بینایی ماشین - Machine vision


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Monitoring crop phenology with street-level imagery using computer vision


    ترجمه فارسی عنوان مقاله:

    پایش فنولوژی محصول با تصاویر سطح خیابان با استفاده از بینایی ماشین


    منبع:

    ScienceDirect- Elsevier- Computers and Electronics in Agriculture, 196 (2022) 106866: doi:10:1016/j:compag:2022:106866


    نویسنده:

    Raphaël d’Andrimont


    چکیده انگلیسی:

    Street-level imagery holds a significant potential to scale-up in-situ data collection. This is enabled by combining the use of cheap high-quality cameras with recent advances in deep learning compute solutions to derive relevant thematic information. We present a framework to collect and extract crop type and phenological information from street level imagery using computer vision. Monitoring crop phenology is critical to assess gross primary productivity and crop yield. During the 2018 growing season, high-definition pictures were captured with side- looking action cameras in the Flevoland province of the Netherlands. Each month from March to October, a fixed 200-km route was surveyed collecting one picture per second resulting in a total of 400,000 geo-tagged pictures. At 220 specific parcel locations, detailed on the spot crop phenology observations were recorded for 17 crop types (including bare soil, green manure, and tulips): bare soil, carrots, green manure, grassland, grass seeds, maize, onion, potato, summer barley, sugar beet, spring cereals, spring wheat, tulips, vegetables, winter barley, winter cereals and winter wheat. Furthermore, the time span included specific pre-emergence parcel stages, such as differently cultivated bare soil for spring and summer crops as well as post-harvest cultivation practices, e.g. green manuring and catch crops. Classification was done using TensorFlow with a well-known image recognition model, based on transfer learning with convolutional neural network (MobileNet). A hypertuning methodology was developed to obtain the best performing model among 160 models. This best model was applied on an independent inference set discriminating crop type with a Macro F1 score of 88.1% and main phenological stage at 86.9% at the parcel level. Potential and caveats of the approach along with practical considerations for implementation and improvement are discussed. The proposed framework speeds up high quality in-situ data collection and suggests avenues for massive data collection via automated classification using computer vision.
    keywords: Phenology | Plant recognition | Agriculture | Computer vision | Deep learning | Remote sensing | CNN | BBCH | Crop type | Street view imagery | Survey | In-situ | Earth observation | Parcel | In situ


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 14
    حجم فایل: 16508 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 942 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 942 :::::::: افراد آنلاین: 15