دسته بندی:
بینایی ماشین - Machine vision
سال انتشار:
2022
عنوان انگلیسی مقاله:
Computer vision-based classification of concrete spall severity using metaheuristic-optimized Extreme Gradient Boosting Machine and Deep Convolutional Neural Network
ترجمه فارسی عنوان مقاله:
طبقه بندی مبتنی بر بینایی کامپیوتری شدت پاشش بتن با استفاده از ماشین تقویت کننده گرادیان قویا بهینه شده فراابتکاری و شبکه عصبی پیچیده عمیق
منبع:
ScienceDirect- Elsevier- Automation in Construction, 140 (2022) 104371: doi:10:1016/j:autcon:2022:104371
نویسنده:
Hieu Nguyen
چکیده انگلیسی:
This paper presents alternative solutions for classifying concrete spall severity based on computer vision ap-
proaches. Extreme Gradient Boosting Machine (XGBoost) and Deep Convolutional Neural Network (DCNN) are
employed for categorizing image samples into two classes: shallow spall and deep spall. To delineate the
properties of a concrete surface subject to spall, texture descriptors including local binary pattern, center sym-
metric local binary pattern, local ternary pattern, and attractive repulsive center symmetric local binary pattern
(ARCS-LBP) are employed as feature extraction methods. In addition, the prediction performance of XGBoost is
enhanced by Aquila optimizer metaheuristic. Meanwhile, DCNN is capable of performing image classification
directly without the need for texture descriptors. Experimental results with a dataset containing real-world
concrete surface images and 20 independent model evaluations point out that the XGBoost optimized by the
Aquila metaheuristic and used with ARCS-LBP has achieved an outstanding classification performance with a
classification accuracy rate of roughly 99%.
keywords: شدت ریزش بتن | دستگاه افزایش گرادیان | الگوی باینری محلی | فراماسونری | یادگیری عمیق | Concrete spall severity | Gradient boosting machine | Local binary pattern | Metaheuristic | Deep learning
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0