دانلود مقاله انگلیسی رایگان:Cov-Net: یک روش تشخیصی به کمک رایانه برای تشخیص COVID-19 از تصاویر اشعه ایکس قفسه سینه از طریق بینایی ماشین - 2022
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision
    Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision

    دسته بندی:

    بینایی ماشین - Machine vision


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision


    ترجمه فارسی عنوان مقاله:

    Cov-Net: یک روش تشخیصی به کمک رایانه برای تشخیص COVID-19 از تصاویر اشعه ایکس قفسه سینه از طریق بینایی ماشین


    منبع:

    ScienceDirect- Elsevier- Expert Systems With Applications, 207 (2022) 118029: doi:10:1016/j:eswa:2022:118029


    نویسنده:

    Han Li


    چکیده انگلیسی:

    In the context of global pandemic Coronavirus disease 2019 (COVID-19) that threatens life of all human beings, it is of vital importance to achieve early detection of COVID-19 among symptomatic patients. In this paper, a computer aided diagnosis (CAD) model Cov-Net is proposed for accurate recognition of COVID-19 from chest X-ray images via machine vision techniques, which mainly concentrates on powerful and robust feature learning ability. In particular, a modified residual network with asymmetric convolution and attention mechanism embedded is selected as the backbone of feature extractor, after which skip-connected dilated convolution with varying dilation rates is applied to achieve sufficient feature fusion among high-level semantic and low-level detailed information. Experimental results on two public COVID-19 radiography databases have demonstrated the practicality of proposed Cov-Net in accurate COVID-19 recognition with accuracy of 0.9966 and 0.9901, respectively. Furthermore, within same experimental conditions, proposed Cov-Net outperforms other six state-of-the-art computer vision algorithms, which validates the superiority and competitiveness of Cov-Net in building highly discriminative features from the perspective of methodology. Hence, it is deemed that proposed Cov-Net has a good generalization ability so that it can be applied to other CAD scenarios. Consequently, one can conclude that this work has both practical value in providing reliable reference to the radiologist and theoretical significance in developing methods to build robust features with strong presentation ability.
    keywords: COVID-19 | Computer aided diagnosis (CAD) | Feature learning | Image recognition | Machine vision


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 3399 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 607 :::::::: بازدید دیروز: 7209 :::::::: بازدید کل: 19973 :::::::: افراد آنلاین: 12