دانلود مقاله انگلیسی رایگان:چارچوب تجزیه و تحلیل تصویر رادیولوژیکی برای غربالگری اولیه عفونت COVID-19: یک رویکرد مبتنی بر بینایی کامپیوتری - 2022
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach
    A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach

    دسته بندی:

    بینایی ماشین - Machine vision


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    A radiological image analysis framework for early screening of the COVID-19 infection: A computer vision-based approach


    ترجمه فارسی عنوان مقاله:

    چارچوب تجزیه و تحلیل تصویر رادیولوژیکی برای غربالگری اولیه عفونت COVID-19: یک رویکرد مبتنی بر بینایی کامپیوتری


    منبع:

    ScienceDirect- Elsevier- Applied Soft Computing, 119 (2022) 108528: doi:10:1016/j:asoc:2022:108528


    نویسنده:

    Shouvik Chakraborty ∗, Kalyani Mali


    چکیده انگلیسی:

    Due to the absence of any specialized drugs, the novel coronavirus disease 2019 or COVID-19 is one of the biggest threats to mankind Although the RT-PCR test is the gold standard to confirm the presence of this virus, some radiological investigations find some important features from the CT scans of the chest region, which are helpful to identify the suspected COVID-19 patients. This article proposes a novel fuzzy superpixel-based unsupervised clustering approach that can be useful to automatically process the CT scan images without any manual annotation and helpful in the easy interpretation. The proposed approach is based on artificial cell swarm optimization and will be known as the SUFACSO (SUperpixel based Fuzzy Artificial Cell Swarm Optimization) and implemented in the Matlab environment. The proposed approach uses a novel superpixel computation method which is helpful to effectively represent the pixel intensity information which is beneficial for the optimization process. Superpixels are further clustered using the proposed fuzzy artificial cell swarm optimization approach. So, a twofold contribution can be observed in this work which is helpful to quickly diagnose the patients in an unsupervised manner so that, the suspected persons can be isolated at an early phase to combat the spread of the COVID-19 virus and it is the major clinical impact of this work. Both qualitative and quantitative experimental results show the effectiveness of the proposed approach and also establish it as an effective computer-aided tool to fight against the COVID-19 virus. Four well-known cluster validity measures Davies–Bouldin, Dunn, Xie–Beni, and β index are used to quantify the segmented results and it is observed that the proposed approach not only performs well but also outperforms some of the standard approaches. On average, the proposed approach achieves 1.709792, 1.473037, 1.752433, 1.709912 values of the Xie–Beni index for 3, 5,7, and 9 clusters respectively and these values are significantly lesser compared to the other state-of-the-art approaches. The general direction of this research is worthwhile pursuing leading, eventually, to a contribution to the community.
    keywords: کووید-۱۹ | تفسیر تصویر رادیولوژیکی | سوپرپیکسل | سیستم فازی نوع 2 | بهینه سازی ازدحام سلول های مصنوعی | COVID-19 | Radiological image interpretation | Superpixel | Type 2 fuzzy system | Artificial cell swarm optimization


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 21
    حجم فایل: 5354 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 610 :::::::: بازدید دیروز: 9785 :::::::: بازدید کل: 24528 :::::::: افراد آنلاین: 5