دسته بندی:
بینایی ماشین - Machine vision
سال انتشار:
2022
عنوان انگلیسی مقاله:
In-situ optimization of thermoset composite additive manufacturing via deep learning and computer vision
ترجمه فارسی عنوان مقاله:
بهینه سازی درجای تولید افزودنی کامپوزیت ترموست از طریق یادگیری عمیق و بینایی کامپیوتری
منبع:
ScienceDirect- Elsevier- Additive Manufacturing, 58 (2022) 102985: doi:10:1016/j:addma:2022:102985
نویسنده:
William Jordan Wright
چکیده انگلیسی:
With the advent of extrusion additive manufacturing (AM), fabrication of high-performance thermoset com-
posites without the need of tooling has become a reality. However, finding an optimal set of printing parameters
for these thermoset composites during extrusion requires tedious experimentation as composite ink properties
can vary significantly with respect to environmental parameters such as temperature and relative humidity.
Addressing this challenge, this study presents a novel optimization framework that utilizes computer vision and
deep learning (DL) to optimize the calibration and printing processes of thermoset composite AM. Unlike
traditional DL models where printing parameters are determined prior to printing, our proposed framework
dynamically and autonomously adjusts the printing parameters during extrusion. A novel DL integrated extrusion
AM system is developed to determine the optimal printing parameters including print speed, road width, and
layer height for a given composite ink. This closed loop system is consisted of a computer communicating with an
extrusion AM system, a camera to perform in-situ imaging and several high accuracy convolution neural net-
works (CNNs) selecting the ideal process parameters for composite AM. The results show that our proposed
process optimization framework was able to autonomously determine these parameters for a carbon fiber-
composite ink. Consequently, specimens with complex geometries could be fabricated without visible defects
and with maximum fiber alignment and thus enhancing the mechanical performance of the specimen’s com-
posite material. Moreover, our proposed framework minimizes a labor-intensive procedure required to additively
manufacture thermoset composites by optimizing the extrusion process without any user intervention.
keywords: یادگیری عمیق | بینایی کامپیوتر | اکستروژن | پرینت سه بعدی کامپوزیت | Deep learning | Computer vision | Extrusion | Composite 3D printing
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0