دانلود مقاله انگلیسی رایگان:تشخیص بیماری برگ گیاه با استفاده از بینایی کامپیوتری و الگوریتم های یادگیری ماشین - 2022
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت مقاله خود را دریافت کنید (تا مشکل رفع گردد). با تشکر از صبوری شما!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-->
دانلود مقاله انگلیسی بینایی ماشین رایگان
  • Plant leaf disease detection using computer vision and machine learning algorithms Plant leaf disease detection using computer vision and machine learning algorithms
    Plant leaf disease detection using computer vision and machine learning algorithms

    دسته بندی:

    بینایی ماشین - Machine vision


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Plant leaf disease detection using computer vision and machine learning algorithms


    ترجمه فارسی عنوان مقاله:

    تشخیص بیماری برگ گیاه با استفاده از بینایی کامپیوتری و الگوریتم های یادگیری ماشین


    منبع:

    ScienceDirect- Elsevier- Global Transitions Proceedings, 3 (2022) 305-310: doi:10:1016/j:gltp:2022:03:016


    نویسنده:

    Sunil S. Harakannanavar


    چکیده انگلیسی:

    Agriculture provides food to all the human beings even in case of rapid increase in the population. It is recom- mended to predict the plant diseases at their early stage in the field of agriculture is essential to cater the food to the overall population. But it unfortunate to predict the diseases at the early stage of the crops. The idea behind the paper is to bring awareness amongst the farmers about the cutting-edge technologies to reduces diseases in plant leaf. Since tomato is merely available vegetable, the approaches of machine learning and image processing with an accurate algorithm is identified to detect the leaf diseases in the tomato plant. In this investigation, the samples of tomato leaves having disorders are considered. With these disorder samples of tomato leaves, the farm- ers will easily find the diseases based on the early symptoms. Firstly, the samples of tomato leaves are resized to 256 × 256 pixels and then Histogram Equalization is used to improve the quality of tomato samples. The K-means clustering is introduced for partitioning of dataspace into Voronoi cells. The boundary of leaf samples is extracted using contour tracing. The multiple descriptors viz., Discrete Wavelet Transform, Principal Component Analysis and Grey Level Co-occurrence Matrix are used to extract the informative features of the leaf samples. Finally, the extracted features are classified using machine learning approaches such as Support Vector Machine (SVM), Convolutional Neural Network (CNN) and K-Nearest Neighbor (K-NN). The accuracy of the proposed model is tested using SVM (88%), K-NN (97%) and CNN (99.6%) on tomato disordered samples.
    keywords: شبکه های عصبی کانولوشنال | تبدیل موجک گسسته | تجزیه و تحلیل مؤلفه های اصلی | نزدیکترین همسایه | بیماری برگ | Convolutional Neural Networks | Discrete Wavelet Transform | Principal Component Analysis | Nearest Neighbor | Leaf disease


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 6
    حجم فایل: 1615 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 2480 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 2480 :::::::: افراد آنلاین: 12