دانلود مقاله انگلیسی رایگان:تشخیص واکنش نامطلوب از رسانه های اجتماعی بر اساس کوانتوم Bi-LSTM با توجه - 2022
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی محاسبات کوانتومی رایگان
  • Adverse Reaction Detection from Social Media based on Quantum Bi-LSTM with Attention Adverse Reaction Detection from Social Media based on Quantum Bi-LSTM with Attention
    Adverse Reaction Detection from Social Media based on Quantum Bi-LSTM with Attention

    دسته بندی:

    محاسبات کوانتومی - Quantum-Computing


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Adverse Reaction Detection from Social Media based on Quantum Bi-LSTM with Attention


    ترجمه فارسی عنوان مقاله:

    تشخیص واکنش نامطلوب از رسانه های اجتماعی بر اساس کوانتوم Bi-LSTM با توجه


    منبع:

    ieee - ieee Access; ;PP;99;10:1109/ACCESS:2022:3151900


    نویسنده:

    Xuqi Wang, Xianfeng Wang ,Shanwen Zhang


    چکیده انگلیسی:

    Drug combination is very common in the course of disease treatment. However, it inevitably increases the overall risk of adverse drug reactions (ADRs). It is very important to early and accurately detect and identify the potential ADRs for combined medication safety and public health. Social media is an important pharmacovigilance data source for ADR detection. But the data are complex, mass, clutter, highly sparse, so it is difficult to detect the ADR information from these data. Deep learning stands out in terms of increased accuracy. However, it takes a lot of training time and requires a lot of computing power. Quantum computing has strong parallel computing capability, and requires less computing power. By introducing attention mechanism and quantum computing into Bi-directional Long Short-Term Memory (Bi-LSTM), a quantum Bi-LSTM with attention (QBi-LSTMA) model is constructed for ADR detection from social media big data. QBi-LSTMA is composed of 6 variable component subcircuits (VQC) stacked. Under the condition that the main topology of Bi-LSTM remains unchanged, the biases of QBi-LSTMA in input gate, forgetting gate, candidate memory unit and output gate are removed to simplify the network structure, and the weight and active value qubits of the model are used to update the network weight. The performance of the proposed method is evaluated on the SMM4H dataset, comparing with one traditional ADR detection method and three deep learning based ADR detection approaches. The experiment results show that the proposed method has great potential in ADRs detection. To the best of our knowledge, this is the first time to investigate quantum computing to detect ADRs from social media big data.
    INDEX TERMS: Social media big data | Adverse drug reactions (ADRs) | Bi-directional Long Short-Term Memory (Bi-LSTM) | Quantum Bi-LSTM with attention (QBi-LSTMA).


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 367 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 1450 :::::::: بازدید دیروز: 9785 :::::::: بازدید کل: 25368 :::::::: افراد آنلاین: 43