دانلود مقاله انگلیسی رایگان:ایجاد طرح‌های یکپارچه تقریبی کانال‌های کوانتومی با ظرفیت هولوو کلاسیک فوق اضافی - 2022
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی محاسبات کوانتومی رایگان
  • Approximate Unitary Designs Give Rise to Quantum Channels With Super Additive Classical Holevo Capacity Approximate Unitary Designs Give Rise to Quantum Channels With Super Additive Classical Holevo Capacity
    Approximate Unitary Designs Give Rise to Quantum Channels With Super Additive Classical Holevo Capacity

    دسته بندی:

    محاسبات کوانتومی - Quantum-Computing


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Approximate Unitary Designs Give Rise to Quantum Channels With Super Additive Classical Holevo Capacity


    ترجمه فارسی عنوان مقاله:

    ایجاد طرح‌های یکپارچه تقریبی کانال‌های کوانتومی با ظرفیت هولوو کلاسیک فوق اضافی


    منبع:

    ieee - ieee Transactions on Information Theory;2022;68;9;10:1109/TIT:2022:3167604


    نویسنده:

    Aditya Nema; Pranab Sen


    چکیده انگلیسی:

    In a breakthrough, Hastings showed that there exist quantum channels whose classical Holevo capacity is superadditive i.e. more classical information can be transmitted by quantum encoding strategies entangled across multiple channel uses as compared to unentangled quantum encoding strategies. Hastings’ proof used Haar random unitaries to exhibit superadditivity. In this paper we show that a unitary chosen uniformly at random from an approximate $n^{2/3}$ -design gives rise to a quantum channel with superadditive classical Holevo capacity, where $n$ is the dimension of the unitary exhibiting the Stinespring dilation of the channel superoperator. We follow the geometric functional analytic approach of Aubrun, Szarek and Werner in order to prove our result. More precisely we prove a sharp Dvoretzky-like theorem stating that, with high probability under the choice of a unitary from an approximate $t$ -design, random subspaces of large dimension make a Lipschitz function take almost constant value. Such theorems were known earlier only for Haar random unitaries. We obtain our result by appealing to Low’s technique for proving concentration of measure for an approximate $t$ -design, combined with a stratified analysis of the variational behaviour of Lipschitz functions on the unit sphere in high dimension. The stratified analysis is the main technical advance of this work. Haar random unitaries require at least $Omega (n^{2})$ random bits in order to describe them with good precision. In contrast, there exist exact $n^{2/3}$ -designs using only $O(n^{2/3} log n)$ random bits. Thus, our work can be viewed as a partial derandomisation of Hastings’ result, and a step towards the quest of finding an explicit quantum channel with superadditive classical Holevo capacity. Finally we also show that for any $p > 1$ , approximate unitary $n^{1.7}$ -designs give rise to channels violating subadditivity of Rényi $p$ -entropy. In addition to stratified analysis, the proof of this result uses a new technique of approximating a monotonic differentiable function defined on a closed bounded interval and its derivative by moderate degree polynomials which should be of independent interest.
    Index Terms—Quantum Channels.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 18
    حجم فایل: 400 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 527 :::::::: بازدید دیروز: 9785 :::::::: بازدید کل: 24445 :::::::: افراد آنلاین: 8