دسته بندی:
محاسبات کوانتومی - Quantum-Computing
سال انتشار:
2022
عنوان انگلیسی مقاله:
A Quantum Mechanics-Based Framework for EEG Signal Feature Extraction and Classification
ترجمه فارسی عنوان مقاله:
یک چارچوب مبتنی بر مکانیک کوانتومی برای استخراج و طبقهبندی ویژگی سیگنال EEG
منبع:
ieee - ieee Transactions on Emerging Topics in Computing;2022;10;1;10:1109/TETC:2020:3000734
نویسنده:
YaoChong Li; Ri-Gui Zhou; RuiQing Xu; Jia Luo; She-Xiang Jiang
چکیده انگلیسی:
Quantum machine learning (QML) is an emerging research field, which is devoted to devising
and implementing quantum algorithms that could enable machine learning faster than that of classical computers. In this article, a hierarchic quantum mechanics-based framework is investigated to implement both
the feature extraction and classification in the electroencephalogram (EEG) signal. First, the classical EEG
signal dataset is prepared as a quantum state while the sign of the data point is preserved. The prepared quantum state is then evolved with the quantum wavelet packet transformation (QWPT) and the wavelet packet
energy entropy (WPEE) feature is extracted as the input of the subsequent quantum classifier. We finally propose the improved quantum support vector machine with the arbitrary nonlinear kernel, which is employed to
predict the label of the EEG signal. The complexity analysis indicates that the proposed framework provides
exponential speedup over the same structured classical counterpart. Besides, the quantitative experimental
results verify the feasibility and validity.
INDEX TERMS: Quantum machine learning | feature extraction | classification | EEG signal
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0