دانلود مقاله انگلیسی رایگان:DQRA: عامل مسیریابی کوانتومی عمیق برای مسیریابی درهم تنیده در شبکه های کوانتومی - 2022
بلافاصله پس از پرداخت دانلود کنید
دانلود مقاله انگلیسی محاسبات کوانتومی رایگان
  • DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks
    DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks

    دسته بندی:

    محاسبات کوانتومی - Quantum-Computing


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks


    ترجمه فارسی عنوان مقاله:

    DQRA: عامل مسیریابی کوانتومی عمیق برای مسیریابی درهم تنیده در شبکه های کوانتومی


    منبع:

    ieee - None


    نویسنده:

    LINH LE AND TU N. NGUYEN (Senior Member, IEEE)


    چکیده انگلیسی:

    Quantum routing plays a key role in the development of the next-generation network system. In particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping among particles (e.g., photons) associated with nodes in the network. From another side of computing, machine learning has achieved numerous breakthrough successes in various application domains, including networking. Despite its advantages and capabilities, machine learning is not as much utilized in quantum networking as in other areas. To bridge this gap, in this article, we propose a novel quantum routing model for quantum networks that employs machine learning architectures to construct the routing path for the maximum number of demands (source–destination pairs) within a time window. Specifically, we present a deep reinforcement routing scheme that is called Deep Quantum Routing Agent (DQRA). In short, DQRA utilizes an empirically designed deep neural network that observes the current network states to accommodate the network’s demands, which are then connected by a qubit-preserved shortest path algorithm. The training process of DQRA is guided by a reward function that aims toward maximizing the number of accommodated requests in each routing window. Our experiment study shows that, on average, DQRA is able to maintain a rate of successfully routed requests at above 80% in a qubit-limited grid network and approximately 60% in extreme conditions, i.e., each node can be repeater exactly once in a window. Furthermore, we show that the model complexity and the computational time of DQRA are polynomial in terms of the sizes of the quantum networks.
    INDEX TERMS: Deep learning | deep reinforcement learning (DRL) | machine learning | next-generation network | quantum network routing | quantum networks.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 1016 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 4282 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 4282 :::::::: افراد آنلاین: 41