دانلود مقاله انگلیسی رایگان:آماده سازی حالت کوانتومی کارآمد برای توزیع کوشی بر اساس حساب تکه ای - 2022
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت مقاله خود را دریافت کنید (تا مشکل رفع گردد). با تشکر از صبوری شما!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

-->
دانلود مقاله انگلیسی محاسبات کوانتومی رایگان
  • Efficient Quantum State Preparation for the Cauchy Distribution Based on Piecewise Arithmetic Efficient Quantum State Preparation for the Cauchy Distribution Based on Piecewise Arithmetic
    Efficient Quantum State Preparation for the Cauchy Distribution Based on Piecewise Arithmetic

    دسته بندی:

    محاسبات کوانتومی - Quantum-Computing


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Efficient Quantum State Preparation for the Cauchy Distribution Based on Piecewise Arithmetic


    ترجمه فارسی عنوان مقاله:

    آماده سازی حالت کوانتومی کارآمد برای توزیع کوشی بر اساس حساب تکه ای


    منبع:

    ieee - ieee Transactions on Quantum Engineering;2022;3; ;10:1109/TQE:2021:3138453


    نویسنده:

    None


    چکیده انگلیسی:

    The benefits of the quantum Monte Carlo algorithm heavily rely on the efficiency of the superposition state preparation. So far, most reported Monte Carlo algorithms use the Grover–Rudolph state preparation method, which is suitable for efficiently integrable distribution functions. Consequently, most reported works are based on log-concave distributions, such as normal distributions. However, non-log-concave distributions still have many uses, such as in financial modeling. Recently, a new method was proposed that does not need integration to calculate the rotation angle for state preparation. However, performing efficient state preparation is still difficult due to the high cost associated with high precision and low error in the calculation for the rotation angle. Many methods of quantum state preparation use polynomial Taylor approximations to reduce the computation cost. However, Taylor approximations do not work well with heavy-tailed distribution functions that are not bounded exponentially. In this article, we present a method of efficient state preparation for heavy-tailed distribution functions. Specifically, we present a quantum gate-level algorithm to prepare quantum superposition states based on the Cauchy distribution, which is a non-log-concave heavy-tailed distribution. Our procedure relies on a piecewise polynomial function instead of a single Taylor approximation to reduce computational cost and increase accuracy. The Cauchy distribution is an even function, so the proposed piecewise polynomial contains only a quadratic term and a constant term to maintain the simplest approximation of an even function. Numerical analysis shows that the required number of subdomains increases linearly as the approximation error decreases exponentially. Furthermore, the computation complexity of the proposed algorithm is independent of the number of subdomains in the quantum implementation of the piecewise function due to quantum parallelism. An example of the proposed algorithm based on a simulation conducted in Qiskit is presented to demonstrate its capability to perform state preparation based on the Cauchy distribution.
    INDEX TERMS: Algorithms | gate operations | quantum computing.


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 9
    حجم فایل: 1338 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 3258 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 3258 :::::::: افراد آنلاین: 8