با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت مقاله خود را دریافت کنید (تا مشکل رفع گردد). با تشکر از صبوری شما!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
دسته بندی:
محاسبات کوانتومی - Quantum-Computing
سال انتشار:
2022
عنوان انگلیسی مقاله:
Parameterized Hamiltonian Learning With Quantum Circuit
ترجمه فارسی عنوان مقاله:
یادگیری همیلتونی پارامتری شده با مدار کوانتومی
منبع:
ieee - ieee Transactions on Pattern Analysis and Machine Intelligence;2022;PP;99;10:1109/TPAMI:2022:3203157
نویسنده:
Jinjing Shi, Member, IEEE, Wenxuan Wang, Student Member, IEEE, Xiaoping Lou, Member, IEEE, Shichao Zhang, Senior Member, IEEE, and Xuelong Li, Fellow, IEEE
چکیده انگلیسی:
Hamiltonian learning, as an important quantum machine learning technique, provides a significant approach for
determining an accurate quantum system. This paper establishes parameterized Hamiltonian learning (PHL) and explores its
application and implementation on quantum computers. A parameterized quantum circuit for Hamiltonian learning is first created by
decomposing unitary operators to excite the system evolution. Then, a PHL algorithm is developed to prepare a specific Hamiltonian
system by iteratively updating the gradient of the loss function about circuit parameters. Finally, the experiments are conducted on
Origin Pilot, and it demonstrates that the PHL algorithm can deal with the image segmentation problem and provide a segmentation
solution accurately. Compared with the classical Grabcut algorithm, the PHL algorithm eliminates the requirement of early manual
intervention. It provides a new possibility for solving practical application problems with quantum devices, which also assists in solving
increasingly complicated problems and supports a much wider range of application possibilities in the future.
Index Terms: Quantum machine learning | Parameterized Hamiltonian learning (PHL) | parameterized quantum circuit | Hamiltonian learning algorithm | Image segmentation
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0