دسته بندی:
محاسبات کوانتومی - Quantum-Computing
سال انتشار:
2022
عنوان انگلیسی مقاله:
Practical Quantum K-Means Clustering: Performance Analysis and Applications in Energy Grid Classification
ترجمه فارسی عنوان مقاله:
خوشهبندی کاربردی کوانتومی K-Means: تحلیل عملکرد و کاربردها در طبقهبندی شبکه انرژی
منبع:
ieee - ieee Transactions on Quantum Engineering;2022;3; ;10:1109/TQE:2022:3185505
نویسنده:
STEPHEN DIADAMO1,2 , COREY O’MEARA1 , GIORGIO CORTIANA1, AND JUAN BERNABÉ-MORENO
چکیده انگلیسی:
In this work, we aim to solve a practical use-case of unsupervised clustering that has applications in predictive maintenance in the energy operations sector using quantum computers. Using only cloud
access to quantum computers, we complete thorough performance analysis of what some current quantum
computing systems are capable of for practical applications involving nontrivial mid-to-high-dimensional
datasets. We first benchmark how well distance estimation can be performed using two different metrics
based on the swap-test, using angle and amplitude data embedding. Next, for the clustering performance
analysis, we generate sets of synthetic data with varying cluster variance and compare simulation to physical
hardware results using the two metrics. From the results of this performance analysis, we propose a general,
competitive, and parallelized version of quantum k-means clustering to avoid some pitfalls discovered due
to noisy hardware and apply the approach to a real energy grid clustering scenario. Using real-world German
electricity grid data, we show that the new approach improves the balanced accuracy of the standard quantum
k-means clustering by 67.8% with respect to the labeling of the classical algorithm.
INDEX TERMS: Cloud quantum computing | quantum clustering | quantum computing | quantum distance estimation.
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0