دسته بندی:
محاسبات کوانتومی - Quantum-Computing
سال انتشار:
2022
عنوان انگلیسی مقاله:
Quantum Approximate Optimization Algorithm Based Maximum Likelihood Detection
ترجمه فارسی عنوان مقاله:
الگوریتم بهینه سازی تقریبی کوانتومی مبتنی بر تشخیص حداکثر احتمال
منبع:
ieee - ieee Transactions on Communications;2022;70;8;10:1109/TCOMM:2022:3185287
نویسنده:
Jingjing Cui; Yifeng Xiong; Soon Xin Ng; Lajos Hanzo
چکیده انگلیسی:
Recent advances in quantum technologies pave the
way for noisy intermediate-scale quantum (NISQ) devices, where
the quantum approximation optimization algorithm (QAOA)
constitutes a promising candidate for demonstrating tangible
quantum advantages based on NISQ devices. In this paper,
we consider the maximum likelihood (ML) detection problem of
binary symbols transmitted over a multiple-input and multipleoutput (MIMO) channel, where finding the optimal solution is
exponentially hard using classical computers. Here, we apply the
QAOA for the ML detection by encoding the problem of interest
into a level-p QAOA circuit having 2p variational parameters,
which can be optimized by classical optimizers. This level-p
QAOA circuit is constructed by applying the prepared Hamiltonian to our problem and the initial Hamiltonian alternately
in p consecutive rounds. More explicitly, we first encode the
optimal solution of the ML detection problem into the ground
state of a problem Hamiltonian. Using the quantum adiabatic
evolution technique, we provide both analytical and numerical
results for characterizing the evolution of the eigenvalues of
the quantum system used for ML detection. Then, for level-
1 QAOA circuits, we derive the analytical expressions of the
expectation values of the QAOA and discuss the complexity
of the QAOA based ML detector. Explicitly, we evaluate the
computational complexity of the classical optimizer used and the
storage requirement of simulating the QAOA. Finally, we evaluate
the bit error rate (BER) of the QAOA based ML detector and
compare it both to the classical ML detector and to the classical
minimum mean squared error (MMSE) detector, demonstrating
that the QAOA based ML detector is capable of approaching the
performance of the classical ML detector.
Index Terms: Quantum technology | maximum likelihood (ML) detection | quantum approximation optimization algorithm (QAOA) | bit error rate (BER).
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0