دانلود مقاله انگلیسی رایگان:کاهش ابعاد کوانتومی برای تشخیص الگو در داده های فضایی-طیفی با وضوح بالا - 2022
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
دانلود مقاله انگلیسی محاسبات کوانتومی رایگان
  • Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data
    Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data

    دسته بندی:

    محاسبات کوانتومی - Quantum-Computing


    سال انتشار:

    2022


    عنوان انگلیسی مقاله:

    Quantum Dimension Reduction for Pattern Recognition in High-Resolution Spatio-Spectral Data


    ترجمه فارسی عنوان مقاله:

    کاهش ابعاد کوانتومی برای تشخیص الگو در داده های فضایی-طیفی با وضوح بالا


    منبع:

    ieee - IEEE TRANSACTIONS ON COMPUTERS, VOL: 71, NO: 1, JANUARY 2022


    نویسنده:

    Naveed Mahmud , Student Member, IEEE, Bennett Haase-Divine, Student Member, IEEE, Andrew MacGillivray , and Esam El-Araby , Senior Member, IEEE


    چکیده انگلیسی:

    The promises of advanced quantum computing technology have driven research in the simulation of quantum computers on classical hardware, where the feasibility of quantum algorithms for real-world problems can be investigated. In domains such as High Energy Physics (HEP) and Remote Sensing Hyperspectral Imagery, classical computing systems are held back by enormous readouts of high-resolution data. Due to the multi-dimensionality of the readout data, processing and performing pattern recognition operations for this enormous data are both computationally intensive and time-consuming. In this article, we propose a methodology that utilizes Quantum Haar Transform (QHT) and a modified Grover’s search algorithm for time-efficient dimension reduction and dynamic pattern recognition in data sets that are characterized by high spatial resolution and high dimensionality. QHT is performed on the data to reduce its dimensionality at preserved spatial locality, while the modified Grover’s search algorithm is used to search for dynamically changing multiple patterns in the reduced data set. By performing search operations on the reduced data set, processing overheads are minimized. Moreover, quantum techniques produce results in less time than classical dimension reduction and search methods. The feasibility of the proposed methodology is verified by emulating the quantum algorithms on classical hardware based on field programmable gate arrays (FPGAs). We present designs of the quantum circuits for multi-dimensional QHT and multi-pattern Grover’s search. We also present two emulation techniques and the corresponding hardware architectures for this methodology. A high performance reconfigurable computer (HPRC) was used for the experimental evaluation, and high-resolution images were used as the input data set. Analysis of the methods and implications of the experimental results are discussed.
    Index Terms— Quantum computing | field-programmable gate arrays (FPGAs)


    سطح: متوسط
    تعداد صفحات فایل pdf انگلیسی: 12
    حجم فایل: 306 کیلوبایت

    قیمت: رایگان


    توضیحات اضافی:




اگر این مقاله را پسندیدید آن را در شبکه های اجتماعی به اشتراک بگذارید (برای به اشتراک گذاری بر روی ایکن های زیر کلیک کنید)

تعداد نظرات : 0

الزامی
الزامی
الزامی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 963 :::::::: بازدید دیروز: 7209 :::::::: بازدید کل: 20329 :::::::: افراد آنلاین: 40