دسته بندی:
محاسبات کوانتومی - Quantum-Computing
سال انتشار:
2022
عنوان انگلیسی مقاله:
Quantum Embedding Search for Quantum Machine Learning
ترجمه فارسی عنوان مقاله:
جستجوی توکار کوانتومی برای یادگیری ماشین کوانتومی
منبع:
ieee - ieee Access;2022;10; ;10:1109/ACCESS:2022:3167398
نویسنده:
None
چکیده انگلیسی:
This paper introduces an automated search algorithm (QES, pronounced as ‘‘quest’’), which
derives optimal design of entangling layout for supervised quantum machine learning. First, we establish
the connection between the structures of entanglement using CNOT gates and the representations of
directed multi-graphs, enabling a well-defined search space. The proposed encoding scheme of quantum
entanglement as genotype vectors bridges the ansatz optimization and classical machine learning, allowing
efficient search on any well-defined search space. Second, we instigate the entanglement level to reduce
the cardinality of the search space to a feasible size for practical implementations. Finally, we mitigate the
cost of evaluating the true loss function by using surrogate models via sequential model-based optimization.
We demonstrate the feasibility of our proposed approach on simulated and bench-marking datasets, including
Iris, Wine and Breast Cancer datasets, which empirically shows that found quantum embedding architecture
by QES outperforms manual designs in term of the predictive performance.
INDEX TERMS: Ansatz optimization | quantum embeddings | quantum machine learning | quantum logic gates | quantum neural network | quantum computing.
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0