دسته بندی:
محاسبات کوانتومی - Quantum-Computing
سال انتشار:
2022
عنوان انگلیسی مقاله:
Retargetable Optimizing Compilers for Quantum Accelerators via a Multilevel Intermediate Representation
ترجمه فارسی عنوان مقاله:
کامپایلرهای بهینه سازی مجدد قابل هدف گیری برای شتاب دهنده های کوانتومی از طریق یک نمایش میانی چند سطحی
منبع:
ieee - ieee Micro;2022;42;5;10:1109/MM:2022:3179654
نویسنده:
Thien Nguyen; Alexander McCaskey
چکیده انگلیسی:
We present a multilevel quantum–classical intermediate representation (IR) that
enables an optimizing, retargetable compiler for available quantum languages.
Our work builds upon the multilevel intermediate representation (MLIR)
framework and leverages its unique progressive lowering capabilities to map
quantum languages to the low-level virtual machine (LLVM) machine-level IR.
We provide both quantum and classical optimizations via the MLIR pattern
rewriting subsystem and standard LLVM optimization passes, and demonstrate
the programmability, compilation, and execution of our approach via standard
benchmarks and test cases. In comparison to other standalone language and
compiler efforts available today, our work results in compile times that are
1,000 faster than standard Pythonic approaches, and 5–10 faster than
comparative standalone quantum language compilers. Our compiler provides
quantum resource optimizations via standard programming patterns that result
in a 10 reduction in entangling operations, a common source of program
noise. We see this work as a vehicle for rapid quantum compiler prototyping.
قیمت: رایگان
توضیحات اضافی:
تعداد نظرات : 0