ردیف | عنوان | نوع |
---|---|---|
1 |
Mobility-aware load Balancing for Reliable Self-Organization Networks : Multi-agent Deep Reinforcement Learning
توازن بار سیار اگاه برای شبکه های خود سازماندهی قابل اعتماد : یادگیری تقویتی عمیق چند عاملی-2020 Self-Organizing Networks (SON) is a collection of functions for automatic configuration, optimization, and
healing of networks and mobility optimization is one of the main functions of self-organized cellular networks.
State of the art Mobility Robustness Optimization (MRO) schemes have relied on rule-based recommended
systems to search the parameter space; yet it is unwieldy to design rules for all possible mobility patterns in any
network. In this regard, we presented a Deep Learning-based MRO solution (DRL-MRO), which learns the required
parameters appropriate values for each mobility pattern in individual cells. Optimal mobility setting for
Handover parameters also depends on the user distribution and their velocities in the network. In this framework,
an effective mobility-aware load balancing approach applied for autonomous methods of configuring the
parameters in accordance with the mobility patterns in which approximately the same quality level is provided
for each subscriber. The simulation results show that the function of mobility robustness optimization not only
learns to optimize HO performance, but also it learns how to distribute excess load throughout the network. The
experimental results prove that this solution minimizes the number of unsatisfied subscribers (Nus) and it can
also guarantee a more balanced network using cell load sharing in addition to increase cell throughput outperform
the current schemes. Keywords: Distributed Learning Automat | Self- Optimization Networking | Mobility | Management | Cognitive Cellular Networks | Load Balancing |
مقاله انگلیسی |
2 |
Deep reinforcement one-shot learning for artificially intelligent classification in expert aided systems
یادگیری تقویتی عمیق یک شات برای طبقه بندی هوشمندانه مصنوعی در سیستم های خبره-2020 In recent years there has been a sharp rise in applications, in which significant events need to be classified
but only a few training instances are available. These are known as cases of one-shot learning. To handle this
challenging task, organizations often use human analysts to classify events under high uncertainty. Existing
algorithms use a threshold-based mechanism to decide whether to classify an object automatically or send it
to an analyst for deeper inspection. However, this approach leads to a significant waste of resources since it
does not take the practical temporal constraints of system resources into account. By contrast, the focus in this
paper is on rigorously optimizing the resource consumption in the system which applies to broad application
domains, and is of a significant interest for academic research, industrial developments, as well as society
and citizens benefit. The contribution of this paper is threefold. First, a novel Deep Reinforcement One-shot
Learning (DeROL) framework is developed to address this challenge. The basic idea of the DeROL algorithm
is to train a deep-Q network to obtain a policy which is oblivious to the unseen classes in the testing data.
Then, in real-time, DeROL maps the current state of the one-shot learning process to operational actions based
on the trained deep-Q network, to maximize the objective function. Second, the first open-source software
for practical artificially intelligent one-shot classification systems with limited resources is developed for the
benefit of researchers and developers in related fields. Third, an extensive experimental study is presented
using the OMNIGLOT dataset for computer vision tasks, the UNSW-NB15 dataset for intrusion detection tasks,
and the Cleveland Heart Disease Dataset for medical monitoring tasks that demonstrates the versatility and
efficiency of the DeROL framework. Keywords: Deep reinforcement learning | One-shot learning | Network optimization | Online classification |
مقاله انگلیسی |
3 |
Improvement of machine learning enhanced genetic algorithm for nonlinear beam dynamics optimization
بهبود الگوریتم ژنتیکی پیشرفته یادگیری ماشین برای بهینه سازی دینامیکی پرتو-2019 On top of the genetic algorithm enhanced by machine learning for nonlinear lattice optimization, as proposed
in Li et al. (2018), an improved repopulation technique has been developed. Different weight coefficients for
defining the ‘‘elite cluster’’ were compared to discern the fastest convergence in two classic optimization test
problems. The volume of the parameter space for generating potentially competitive candidates was further
confined by repopulation in the vicinity of randomly selected ‘‘elite seeds’’. The new repopulation technique
significantly improves the quality of newly populated candidates by excluding the less competitive seeds
introduced by the old repopulation algorithm. This technique has been validated, having a faster convergence
for test problems first, and then applied to the nonlinear lattice optimization for the High Energy Photon
Source storage ring. Keywords: MOGA | Machine learning | Convergence rate | Lattice optimization | High Energy Photon Source |
مقاله انگلیسی |
4 |
Optimising virtual networks over time by using Windows Multiplicative DEA model
بهینه سازی شبکه های مجازی در طول زمان با استفاده از مدل تحلیل پوششی داده ها ویندوز ضربی-2019 Recently, the prediction of the most efficient configuration of a vast set of devices used for mounting an optimised cloud computing services and virtual networks environments have attracted growing atten- tion. This paper proposes a paradigm shift in modelling transmission control protocol (TCP) behaviour over time in virtual networks by using data envelopment analysis (DEA) models. Firstly, it proves that self-similarity with long-range dependency is presented differently in every network device. This study implements a novel fractal dimension concept on virtual networks for prediction, where this key in- dex informs if the transport layer forwards services with smooth or jagged behaviour over time. Another substantial contribution is proving that virtual network devices have a distinct fractal memory, TCP band- width performance, and fractal dimension over time, presenting themselves as important factor for fore- casting of spatiotemporal data. Thus, a continuous stepwise fractal performance evaluation framework methodology is developed as an expert system for virtual network assessment and performs a fractal analysis as a knowledge representation. In addition, due to the limitations of classical DEA models, the windows multiplicative data envelopment analysis (WMDEA) model is used to dynamically assess the fractal time series from virtual network hypervisors. For knowledge acquisition, 50 different virtual net- work hypervisors were appraised as decision-making units (DMU). Finally, this expert system also acts as a math hypervisor capable of determining the correct fractal pattern to follow when delivering TCP services in an optimised virtual network. Keywords: Cloud computing | Windows multiplicative data envelopment | analysis | Fractal expert system | Virtual Networks | Network Optimisation | Stepwise Performance Evaluation |
مقاله انگلیسی |
5 |
On the optimal diversification of social networks in frictional labour markets with occupational mismatch
در مورد تنوع بهینه سازی شبکه های اجتماعی در بازار کار اصطکاکی با عدم هماهنگی شغلی-2017 This paper incorporates social networks into a frictional labour market framework. There are two worker types
and two occupations, which are subject to correlated fluctuations in output. The equilibrium is characterized by
occupational mismatch which is associated with a wage penalty. Every worker has a fixed number of social
contacts in the network. The fraction of contacts of the same occupational type defines homophily of the social
network, so this paper investigates the optimal level of network homophily. Workers are risk-neutral and take
aggregate variables as given, so their optimal individual choice is full homophily. This is different from the social
planners perspective. The planner internalizes external effects of workers network choices on aggregate
variables, so there exists a unique interior value of network homophily maximizing the present value of income.
On the one hand, higher homophily is associated with lower occupational mismatch. But on the other hand,
higher homophily separates the two groups of workers, prevents exchange of information about open vacancies,
and leads to more unemployment, especially in recessions. So it is the trade-off between these two effects and
not the desire to reduce income volatility, as in standard portfolio theory, which gives rise to network
diversification. Comparative statics shows that optimal network homophily is lower and diversification is
stronger with a lower wage penalty from mismatch, lower unemployment benefit and negative correlation in
output fluctuations.
Keywords: Occupational mismatch | Social networks | Homophily | Diversification |
مقاله انگلیسی |
6 |
بهینه سازی شبکه ی زنجیره تأمین سه پلهای چند دورهای چند محصولی دو منظوره با قابلیت اطمینان انبار
سال انتشار: 2015 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 28 هدف از این مقاله، بهینه سازی دو منظوره ی شبکه ی زنجیره ی تأمین سه پله ای چند دوره ای چند محصولی متشکل از کارخانجات تولیدی، مراکز پخش (DC ها) (که هر کدام خدمات نامعینی دارند)، و گره های مشتریان است. دو هدف ما، به حداقل رسانیدن کل هزینه ها و در عین حال به حداکثر رسانیدن تعداد متوسط محصولات توزیع شده به مشتریان است. متغیرهای تصمیم گیری اینها هستند: (1) تعداد و محل DC های قابل اطمینان در شبکه، (2) تعداد بهینه ی اقلام تولیدشده توسط کارخانه ها، (3) مقدار بهینه ی محصولات انتقال-داده شده، (4) موجودی بهینه ی محصولات در DC ها و کارخانه ها، و (5) مقدار کسری بهینه ی گره های مشتریان. این مسأله نخستین بار در چارچوب مدل برنامه ریزی خطی عدد صحیح ترکیبی دومنظوره ی محدودشده فرمول بندی شد. سپس، برای حل این مسأله با نرم افزار GAMS، شش روش تصمیم گیری چند منظوره (MODM) به منظور انتخاب بهترین روش به لحاظ کل هزینه های زنجیره ی تأمین، تعداد کل محصولات توزیع شده ی مورد انتظار برای مشتریان، و زمان CPU مورد نیاز آنها (همگی بطور همزمان) مورد بررسی قرار گرفتند. در پایان برخی نمایش های عددی برای نشان دادن قابلیت کاربردی روش پیشنهادی ارائه شده اند.
کلیدواژه ها: مدیریت زنجیره تأمین | قابلیت اطمینان | بهینه سازی چندمنظوره | برنامه ریزی خطی عدد صحیح ترکیبی | GAMS | MODM |
مقاله ترجمه شده |
7 |
بیشینه سازی درآمد گروه هتلداری کارلسون رزیدور با بهبود مدیریت تقاضا و بهینه سازی قیمتی
سال انتشار: 2013 - تعداد صفحات فایل pdf انگلیسی: 16 - تعداد صفحات فایل doc فارسی: 25 در شرایط متغیر بازار در صنعت هتلداری، گروه هتلداری کارلسون رزیدور (GRHC) به همکاری با گروه نرم افزاری JDA پرداخته تا با استفاده از تحقیق در عملیات، به کسب درآمد بیشتر در هتل ها و پیشتازی در این رقابت نایل گردد. این پروژه نوآورانه بهینه سازی درآمدی با نام قیمت گذاری اتوماتیک اقامت شبانه (SNAP) با پیش بینی درخواست ها در 600 هتل در آمریکا در سال 2007 آغاز شد. این مسئله با راه حل های بهینه سازی شبکه ای در ابعاد بزرگ دنبال شد تا به صورت پویا نرخ اتاق های هتل را براساس حساسیت تقاضا به قیمت، نرخ رقبا، در امکانات در دسترس، پیش بینی میزان تقاضا و قوانین تجاریب هینه سازی کند. تمامی هتل های آمریکای شمالی تا مارس 2011 از SNAP استفاده می کردند. بهینه سازی نمونه اولیه در سال 2008 شروع شد، CRHG مداوماً برتری 2 تا 4 درصدی درآمد را در هتل های استفاده کننده از آن نسبت به سایر هتل ها اندازه گیری کرده است. تا کنون هتل های استفاده کننده از نرم افزارافزایش درآمد سالانه ای بیش از 16 میلیون دلار داشته اند. بعد از به کارگیری موفق در آمریکا، CRHG همکاری خود با JDA را برای انتشار جهانی SNAP ادامه داده است که با تمرکز بر اروپا، خاورمیانه، آفریقا و آسیا-اقیانوسیه بوده است. CRHG پیش بینی می کند که درآمد جهانی ناشی از این راهکارسالانه بیش از 30 میلیون دلار خواهد بود. |
مقاله ترجمه شده |