دانلود و نمایش مقالات مرتبط با داده های بزرگ::صفحه 1
اربعین
نتیجه جستجو - داده های بزرگ

تعداد مقالات یافته شده: 996
ردیف عنوان نوع
1 پیش بینی ورود گردشگران از طریق یادگیری ماشین و شاخص جستجوی اینترنتی
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 10 - تعداد صفحات فایل doc فارسی: 38
مطالعات قبلی نشان داده است که داده های آنلاین، مانند پرس وجوهای انجام شده در موتورهای جستجو، یک منبع اطلاعاتی جدید محسوب می شوند که می توانند برای پیش بینی تقاضای گردشگری مورد استفاده قرار گیرند. در این مطالعه، ما چارچوبی را برای این پیش بینی ارائه می دهیم که با استفاده از یادگیری ماشین و شاخص های جستجوی اینترنتی، ورود گردشگران به مکان های محبوب چین را پیش بینی می کند و عملکرد این پیش بینی، را به ترتیب با نتایج جستجوی تولید شده توسط گوگل و بایدو مقایسه می کنیم. این تحقیق، علیت گرانجر و همبستگیِ میانِ شاخص جستجوی اینترنتی و ورود گردشگران به پکن را تایید می کند. نتایج تجربی ما نشان می دهد که عملکردِ پیش-بینیِ مدل های پیشنهادیِ هسته ی ماشین یادگیری افراطی (KELM )، که مجموعه هایی از گردشگران را با شاخص بایدو و شاخص گوگل ادغام می کنند، در مقایسه با مدل های معیار، به میزان قابل توجهی از نظر دقت پیش بینی و قدرت تحلیل ، بهتر بوده اند.
کلمه های کلیدی: پیش بینی تقاضای گردشگری | هسته ی ماشین یادگیری افراطی | جستجوی داده-های پرس وجو | تحلیل داده های بزرگ | شاخص جستجوی ترکیبی.
مقاله ترجمه شده
2 Big Data Creates New Opportunities for Materials Research: A Review on Methods and Applications of Machine Learning for Materials Design
داده های بزرگ فرصت های جدیدی را برای تحقیقات مواد ایجاد می کنند: مروری بر روش ها و کاربردهای یادگیری ماشین برای طراحی مواد-2019
Materials development has historically been driven by human needs and desires, and this is likely to continue in the foreseeable future. The global population is expected to reach ten billion by 2050, which will promote increasingly large demands for clean and high-efficiency energy, personalized consumer products, secure food supplies, and professional healthcare. New functional materials that are made and tailored for targeted properties or behaviors will be the key to tackling this challenge. Traditionally, advanced materials are found empirically or through experimental trial-and-error approaches. As big data generated by modern experimental and computational techniques is becoming more readily available, data-driven or machine learning (ML) methods have opened new paradigms for the discovery and rational design of materials. In this review article, we provide a brief introduction on various ML methods and related software or tools. Main ideas and basic procedures for employing ML approaches in materials research are highlighted. We then summarize recent important applications of ML for the large-scale screening and optimal design of polymer and porous materials, catalytic materials, and energetic materials. Finally, concluding remarks and an outlook are provided.
Keywords: Big data | Data-driven | Machine learning | Materials screening | Materials design
مقاله انگلیسی
3 Discovering unusual structures from exception using big data and machine learning techniques
کشف ساختارهای غیر معمول از استثناء با استفاده از داده های بزرگ و تکنیک های یادگیری ماشین-2019
Recently, machine learning (ML) has become a widely used technique in materials science study. Most work focuses on predicting the rule and overall trend by building a machine learning model. However, new insights are often learnt from exceptions against the overall trend. In this work, we demonstrate that how unusual structures are discovered from exceptions when machine learning is used to get the relationship between atomic and electronic structures based on big data from high-throughput calculation database. For example, after training an ML model for the relationship between atomic and electronic structures of crystals, we find AgO2F, an unusual structure with both Ag3+ and O2 2 , from structures whose band gap deviates much from the prediction made by our model. A further investigation on this structure might shed light into the research on anionic redox in transition metal oxides of Li-ion batterie.
Keywords: Machine learning | Gradient boosting decision tree | Band gap | Unusual structures
مقاله انگلیسی
4 Automatic detection of relationships between banking operations using machine learning
تشخیص خودکار روابط بین عملیات بانکی با استفاده از یادگیری ماشین-2019
Article history:Received 19 July 2018Revised 5 January 2019Accepted 11 February 2019Available online 12 February 2019Keywords: Machine learning Big dataPattern detection Business analytics FinanceIn their daily business, bank branches should register their operations with several sys- tems in order to share information with other branches and to have a central repository of records. In this way, information can be analysed and processed according to different requisites: fraud detection, accounting or legal requirements. Within this context, there is increasing use of big data and artificial intelligence techniques to improve customer ex- perience. Our research focuses on detecting matches between bank operation records by means of applied intelligence techniques in a big data environment and business intelli- gence analytics. The business analytics function allows relationships to be established and comparisons to be made between variables from the bank’s daily business. Finally, the results obtained show that the framework is able to detect relationships between banking operation records, starting from not homogeneous information and taking into account the large volume of data involved in the process.© 2019 Elsevier Inc. All rights reserved.
Keywords: Machine learning | Big data | Pattern detection | Business analytics | Finance
مقاله انگلیسی
5 Big Data Analysis and Machine Learning in Intensive Care Units
تجزیه و تحلیل داده های بزرگ و یادگیری ماشین در بخش مراقبت های ویژه-2019
Intensive care is an ideal environment for the use of Big Data Analysis (BDA) andMachine Learning (ML), due to the huge amount of information processed and stored in elec-tronic format in relation to such care. These tools can improve our clinical research capabilitiesand clinical decision making in the future.The present study reviews the foundations of BDA and ML, and explores possible applicationsin our field from a clinical viewpoint. We also suggest potential strategies to optimize thesenew technologies and describe a new kind of hybrid healthcare-data science professional witha linking role between clinicians and data.
KEYWORDSBig Data Analysis | Machine Learning | Artificial intelligence | Secondary electronichealth record dataanalysis
مقاله انگلیسی
6 استفاده از رسانه های اجتماعی برای شناسایی جذابیت گردشگری در شش شهر ایتالیا
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 7 - تعداد صفحات فایل doc فارسی: 18
تکامل فناوری و گسترش شبکه های اجتماعی به افراد اجازه داده است که مقادیر زیادی داده را در هر روز تولید کنند. شبکه های اجتماعی کاربرانی را فارهم می کند که به اطلاعات دسترسی دارند. هدف این مقاله تعیین جذابیت های شهرهای مختلف گردشگری ازطریق بررسی رفتار کاربران در شبکه های اجتماعی می باشد. پایگاه داده ای شامل عکس های جغرافیایی واقع شده در شش شهر می باشد که به عنوان یک مرکز فرهنگی و هنری در ایتالیا عمل می کنند. عکس ها از فلیکر که یک بستر به اشتراک گذاری داده می باشد دانلود شدند. تحلیل داده ها با استفاده از دیدگاه مدلهای یادگیری ریاضی و ماشینی انجام شد. نتایج مطالعه ما نشانگر نقشه های شناسایی رفتار کاربران، گرایش سالانه به فعالیت تصویری در شهرها و تاکید بر سودمند بودن روش پیشنهادی می باشد که قادر به تامین اطلاعات مکانی و کاربری است. این مطالعه تاکید می کند که چگونه تحلیل داده های اجتماعی می تواند یک مدل پیشگویانه برای فرموله کردن طرح های گردشگری خلق کند. در انتها، راهبردهای عمومی بازاریابی گردشگری مورد بحث قرار می گیرند.
مقاله ترجمه شده
7 Improving the Performance of Manufacturing Technologies for Advanced Material Processing Using a Big Data and Machine Learning Framework
بهبود عملکرد فن آوری های ساخت برای پردازش مواد پیشرفته با استفاده از یک چارچوب یادگیری ماشین و داده های بزرگ-2019
The paper offers a new approach to improving the performance of the materials knowledge analysis based on Big Data processing and machine learning. We consider a framework in which thread functioning of five machine learning mechanisms intended for solving the classification problem is realized. Classifier operation results are exposed to majority voting. The experimental assessment of performance and accuracy of framework operation is made on the data set containing technological data of the production line. Assessment showed that the offered framework provides a scoring on productivity of materials knowledge processing by 7.4 times.
Keywords: material processing | big data | machine learning | principal component analysis | classifier
مقاله انگلیسی
8 When data is capital: Datafication, accumulation, and extraction
وقتی داده سرمایه است: داده سازی، انباشت و استخراج-2019
The collection and circulation of data is now a central element of increasingly more sectors of contemporary capitalism. This article analyses data as a form of capital that is distinct from, but has its roots in, economic capital. Data collection is driven by the perpetual cycle of capital accumulation, which in turn drives capital to construct and rely upon a universe in which everything is made of data. The imperative to capture all data, from all sources, by any means possible influences many key decisions about business models, political governance, and technological development. This article argues that many common practices of data accumulation should actually be understood in terms of data extraction, wherein data is taken with little regard for consent and compensation. By understanding data as a form capital, we can better analyse the meaning, practices, and implications of datafication as a political economic regime.
Keywords: Big Data | digital capitalism | value | political economy | Marx | Bourdieu
مقاله انگلیسی
9 The social imaginaries of data activism
تصورات اجتماعی فعالانه داده ها-2019
Data activism, promoting new forms of civic and political engagement, has emerged as a response to problematic aspects of datafication that include tensions between data openness and data ownership, and asymmetries in terms of data usage and distribution. In this article, we discuss MyData, a data activism initiative originating in Finland, which aims to shape a more sustainable citizen-centric data economy by means of increasing individuals’ control of their personal data. Using data gathered during long-term participant-observation in collaborative projects with data activists, we explore the internal tensions of data activism by first outlining two different social imaginaries – technological and socio-critical – within MyData, and then merging them to open practical and analytical space for engaging with the socio-technical futures currently in the making. While the technological imaginary favours data infrastructures as corrective measures, the socio-critical imaginary questions the effectiveness of technological correction. Unpacking them clarifies the kinds of political and social alternatives that different social imaginaries ascribe to the notions underlying data activism, and highlights the need to consider the social structures in play. The more far-reaching goal of our exercise is to provide practical and analytical resources for critical engagement in the context of data activism. By merging technological and socio-critical imaginaries in the work of reimagining governing structures and knowledge practices alongside infrastructural arrangements, scholars can depart from the most obvious forms of critique, influence data activism practice, and formulate data ethics and data futures.
Keywords: Datafication | social imaginary | data activism | MyData | data ethics | socio-technical futures
مقاله انگلیسی
10 Conceptual frameworks for social and cultural Big Data analytics: Answering the epistemological challenge
چارچوب مفهومی برای تجزیه و تحلیل داده های بزرگ اجتماعی و فرهنگی : پاسخ به چالش معرفت شناختی-2019
This paper aims to contribute to the development of tools to support an analysis of Big Data as manifestations of social processes and human behaviour. Such a task demands both an understanding of the epistemological challenge posed by the Big Data phenomenon and a critical assessment of the offers and promises coming from the area of Big Data analytics. This paper draws upon the critical social and data scientists’ view on Big Data as an epistemological challenge that stems not only from the sheer volume of digital data but, predominantly, from the proliferation of the narrow-technological and the positivist views on data. Adoption of the social-scientific epistemological stance presupposes that digital data was conceptualised as manifestations of the social. In order to answer the epistemological challenge, social scientists need to extend the repertoire of social scientific theories and conceptual frameworks that may inform the analysis of the social in the age of Big Data. However, an ‘epistemological revolution’ discourse on Big Data may hinder the integration of the social scientific knowledge into the Big Data analytics.
Keywords: Social and cultural Big Data analytics | social science | computational science | epistemological challenge | social media
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی