دانلود و نمایش مقالات مرتبط با داده کاوی::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی

با سلام خدمت کاربران عزیز، به اطلاع می رساند ترجمه مقالاتی که سال انتشار آن ها زیر 2008 می باشد رایگان بوده و میتوانید با وارد شدن در صفحه جزییات مقاله به رایگان ترجمه را دانلود نمایید.

نتیجه جستجو - داده کاوی

تعداد مقالات یافته شده: 627
ردیف عنوان نوع
1 Data Mining Strategies for Real-Time Control in New York City
استراتژی داده کاوی برای کنترل زمان واقعی در شهر نیویورک-2105
The Data Mining System (DMS) at New York City Department of Transportation (NYCDOT) mainly consists of four database systems for traffic and pedestrian/bicycle volumes, crash data, and signal timing plans as well as the Midtown in Motion (MIM) systems which are used as part of the NYCDOT Intelligent Transportation System (ITS) infrastructure. These database and control systems are operated by different units at NYCDOT as an independent database or operation system. New York City experiences heavy traffic volumes, pedestrians and cyclists in each Central Business District (CBD) area and along key arterial systems. There are consistent and urgent needs in New York City for real-time control to improve mobility and safety for all users of the street networks, and to provide a timely response and management of random incidents. Therefore, it is necessary to develop an integrated DMS for effective real-time control and active transportation management (ATM) in New York City. This paper will present new strategies for New York City suggesting the development of efficient and cost-effective DMS, involving: 1) use of new technology applications such as tablets and smartphone with Global Positioning System (GPS) and wireless communication features for data collection and reduction; 2) interface development among existing database and control systems; and 3) integrated DMS deployment with macroscopic and mesoscopic simulation models in Manhattan. This study paper also suggests a complete data mining process for real-time control with traditional static data, current real timing data from loop detectors, microwave sensors, and video cameras, and new real-time data using the GPS data. GPS data, including using taxi and bus GPS information, and smartphone applications can be obtained in all weather conditions and during anytime of the day. GPS data and smartphone application in NYCDOT DMS is discussed herein as a new concept. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshu Keywords: Data Mining System (DMS), New York City, real-time control, active transportation management (ATM), GPS data
مقاله انگلیسی
2 The use of big data and data mining in nurse practitioner clinical education
استفاده از داده های بزرگ و داده کاوی در آموزش بالینی پزشکان -2020
Nurse practitioner (NP) faculty have not fully used data collected in NP clinical education for data mining. With current advances in database technology including data storage and computing power, NP faculty have an opportunity to data mine enormous amounts of clinical data documented by NP students in electronic clinical management systems. The purpose of this project was to examine the use of big data and data mining from NP clinical education and to establish a foundation for competency-based education. Using a data mining knowledge discovery process, faculty are able to gain increased understanding of clinical practicum experiences to inform competency-based NP education and the use of entrusted professional activities for the future.
Keywords: Big data | Data mining | Nurse practitioner clinical education | Competency-based education | Nurse Practitioner Core Competencies | Entrustable professional activities
مقاله انگلیسی
3 Data mining of customer choice behavior in internet of things within relationship network
داده کاوی رفتار انتخاب مشتری در اینترنت اشیایی که در شبکه ارتباطی قرار دارند-2020
Internet of Things has changed the relationship between traditional customer networks, and traditional information dissemination has been affected. Smart environment accelerates the changes in customer behaviors. Apparently, the new customer relationship network, benefitted from the Internet of Things technology, will imperceptibly influence customer choice behaviors for the cyber intelligence. In this work, we selected 298 customers click browsing records as training data, and collected 50 customers who used the platform for the first time as research objects. and use the smart customer relationship network correspond to cyber intelligence to build the customer intelligence decision model in Internet of Things. The results showed that the MAE (Mean Absolute Deviation) of the customer trust evaluation model constructed in this study is 0.215, 45% improvement over the traditional equal assignment method. In addition, customers consumer experience can be enhanced with the support of data mining technology in cyber intelligence. Our work indicated the key to build eliminates confusion in customer choice behavior mechanism is to establish a consumer-centric, effective network of customers and service providers, and to be supported by the Internet of Things, big data analysis, and relational fusion technologies.
Keywords: Internet of things | Customer relationship network | Decision making | Recommendation | Fusion algorithm
مقاله انگلیسی
4 Data mining and application of ship impact spectrum acceleration based on PNN neural network
داده کاوی و کاربرد شتاب طیف تأثیر کشتی بر اساس شبکه عصبی PNN-2020
The selection of the smoothing coefficient of the probabilistic neural network directly affects the performance of the network. Traditionally, all the mode layer neurons use a uniform smoothing coefficient, and then the optimal smoothing parameters suitable for this problem are searched by the optimization algorithm. In this study, the smoothing coefficients of the mode layer neurons connected by the same summation layer are set to the same value, which not only reflects the relationship between the training samples of the same pattern, but also highlights the difference between the training samples of different modes. Two probabilistic neural network models are applied to the ship impact environment prediction respectively. The results show that the classification effect of multiple smoothing factors is further improved than the single smoothing factor network.
Keywords: Ship impact environment prediction | Probabilistic neural network | Smoothing coefficient | Optimization algorithm
مقاله انگلیسی
5 A novel intelligent option price forecasting and trading system by multiple kernel adaptive filters
رویکرد پیش بینی قیمت و گزینه سیستم تجاری با فیلترهای انطباقی چند هسته ای-2020
Derivatives such as options are complex financial instruments. The risk in option trading leads to the demand of trading support systems for investors to control and hedge their risk. The nonlinearity and non-stationarity of option dynamics are the main challenge of option price forecasting. To address the problem, this study develops a multi-kernel adaptive filters (MKAF) for online option trading. MKAF is an improved version of the adaptive filter, which employs multiple kernels to enhance the richness of nonlinear feature representation. The MKAF is a fully adaptive online algorithm. The strength of MKAF is that the weights to the kernels are simultaneous optimally determined in filter coefficient updates. We do not need to design the weights separately. Therefore, MKAF is good at tracking nonstationary nonlinear option dynamics. Moreover, to reduce the computation time in updating the filter, and prevent overadaptation, the number of kernels is restricted by using coherence-based sparsification, which constructs a set of dictionary and uses a coherence threshold to restrict the dictionary size. This study compared the new method with traditional ones, we found the performance improvement is significant and robust. Especially, the cumulated trading profits are substantially increased
Keywords: Artificial intelligence | Adaptive filter | Multiple Kernel Machine | Big data analysis | Data mining | Financial forecasting
مقاله انگلیسی
6 Mining discriminative spatial cues for aerial image quality assessment towards big data
استخراج نشانه های مکانی تبعیض آمیز برای ارزیابی کیفیت تصویر هوایی نسبت به داده های بزرگ-2020
Evaluating massive-scale aerial/satellite images quality is useful in computer vision and intelligent applications. Traditional local features-based algorithms have achieved impressive performance. However, spatial cues, i.e., geometric property and topological structure, have not been exploited effectively and explicitly. Thus, in this paper, we propose a novel method for image quality assessment towards aerial/satellite images, where discriminative spatial cues are well encoded. More specifically, in order to mine inherent spatial structure of aerial images, each image is segmented into several basic components such as buildings, airport and playground. Afterwards, a weighted region adjacency graph (RAG) is built based on the basic components to represent the spatial feature of each aerial image. We integrate the spatial feature with other transform domain features, and train a support vector regression model to achieve image quality assessment. Experiments demonstrate that our method shows competitive or even better performance compared with several state-of-the-art algorithms.
Keywords: Big data | Artificial intelligent | Data mining | Image quality assessment
مقاله انگلیسی
7 IFC-based process mining for design authoring
استخراج فرآیند مبتنی بر IFC برای تألیف طراحی-2020
Building Information Modelling (BIM) is defined as the process of creation and management of digital replica for building products in a collaborative design set-up. On this basis, BIM as a digital collaboration platform in AECO (Architecture, Engineering, Construction, and Operation) industry, can be upgraded to assist monitoring, control and improvement of the business processes related to planning, design, construction and operation of building facilities. The main problem in this regard, is the wastage of data related to activities completed by different actors during the project; and subsequently, the lack of analytics to discover latent patterns in collaboration and execution of such processes. The present study aims to enable BIM to capture digital footprints of project actors and create event logs for design authoring phase of building projects. This is done using files in IFC (Industry Foundation Classes) format, archived during the design process. We have developed algorithms to create event logs from such archives, and analyzed the event logs using process mining (i.e. process discovery, conformance checking and bottleneck analysis), to identify measures derived from as-happened processes. BIM managers can implement such measures in monitoring, controlling and re-engineering work processes related to design authoring. Two case studies were completed to validate and verify the products and findings of the research. Our results show that process models discovered/fine-tuned at various resolutions and from different perspectives (including ‘actor-centric’ and ‘phase-centric’ views) can provide a realistic view of the BIM project execution. This includes understanding the structure of collaboration and hand-over of work; evaluation of compliance with the BIM execution plan; and detection of bottlenecks and re-works. While the scope of the study has been limited to design authoring processes, this mindset can be extended to other BIM uses, and other phases (such as construction and operation) of building projects. Given the growing efforts on upgrading BIM to capture and formalize the lifecycle data on the products, processes and actors, this study can strongly support BIM managers with documentation and evaluation of the business processes and workflows in their project teams.
Keywords: Building Information Modeling | Business processes management | Data mining | Process mining | BIM management | BIM Execution Planning
مقاله انگلیسی
8 FPO tree and DP3 algorithm for distributed parallel Frequent Itemsets Mining
الگوریتم درخت FPO و DP3 برای کاوش موارد متداول توزیع شده موازی-2020
Frequent Itemsets Mining is a fundamental mining model in Data Mining. It supports a vast range of ap- plication fields and can be employed as a key calculation phase in many other mining models such as Association Rules, Correlations, Classifications, etc. Many distributed parallel algorithms have been intro- duced to confront with very large-scale datasets of Big Data. However, the problems of running time and memory scalability still have not had adequate solutions for very large and “hard-to-mined”datasets. In this paper, we propose a distributed parallel algorithm named DP3 ( D istributed P re P ost P lus) which parallelizes the state-of-the-art algorithm PrePost + and operates in Master-Slaves model. Slave machines mine and send local frequent itemsets and support counts to the Master for aggregations. In the case of tremendous numbers of itemsets transferred between the Slaves and Master, the computational load at the Master, therefore, is extremely heavy if there is not the support from our complete FPO tree ( F requent P atterns O rganization) which can provide optimal compactness for light data transfers and highly efficient aggregations with pruning ability. Processing phases of the Slaves and Master are designed for memory scalability and shared-memory parallel in Work-Pool model so as to utilize the computational power of multi-core CPUs. We conducted experiments on both synthetic and real datasets, and the empirical results have shown that our algorithm far outperforms the well-known PFP and other three recently high-performance ones Dist-Eclat, BigFIM, and MapFIM.
Keywords: Frequent Itemsets Mining | Parallel | Distributed | Data Mining | Big Data | Prefix tree
مقاله انگلیسی
9 Eco-friendliness and fashion perceptual attributes of fashion brands: An analysis of consumers’ perceptions based on twitter data mining
سازگاری با محیط زیست و ویژگی های ادراکی مد برندهای مد: تحلیلی از درک مصرف کنندگان براساس داده کاوی توییتر-2020
This study explores if there is a convergence between the concepts of fashion and eco-friendliness in consumer perception of a fashion brand.We assume that increased eco-friendly perception will influence the brand image positively, with this impact being much higher for luxury than for high and fast fashion brands. The hypotheses are tested using data collected from Twitter. We analyzed the fashion clothing brands with the highest number of followers on the Socialbakers list and applied a novel social network mining methodology that allows measuring the relationship between each brand and two perceptual attributes (fashion and eco-friendliness). The method is based on attribute exemplarsdthat is, Twitter accounts that represent a perceptual attribute. Our exemplars catalyze social media conversations on fashion (identified in our research by the keywords “fashion,” “glamour,” and “style”) and ecofriendliness (keywords “environment” and “ethical business”). Based on social network analysis theory, we computed a similarity function between the followers of the exemplars and those of the brand. The results suggest that there is a correlation between the fashion and the eco-friendliness perceptual attributes of a brand; however, this correlation is far stronger for luxury brands than for high and fast fashion brands. The difference in the correlations confirms the recent tendency of fashion luxury brand to increasingly consider treating environmental issues as part of their core business and not just as added value to the brand’s offer.
Keywords: Fashion brands | Twitter | Consumer perception | Environment | Ethical business | Brand image | Big data
مقاله انگلیسی
10 Dynamic luminance tuning method for tunnel lighting based on data mining of real-time traffic flow
روش تنظیم پویا درخشندگی برای روشنایی تونل بر اساس داده کاوی جریان ترافیک در زمان واقعی-2020
Tunnel lighting constitutes one of the major expenses incurred in transportation lighting, and hence substantial research has been conducted to improve the efficiency of lighting and thus to minimize operating costs. This paper investigates an intelligent method for adjusting tunnel lighting with dynamic control based on data mining of traffic flow distribution, traffic composition, and vehicle speed distribution. Field monitoring data of traffic flow in five real expressway tunnels, which are in HeDa expressway, Jilin Province, China, was used in the analysis. The K-MEANS clustering algorithm was used to group (or cluster) the distribution of daily traffic volume into six-time periods, in which the traffic volume includes two peak periods (8:01–11:23 and 14:31–19:01). A dynamic luminance regulation method is proposed that distinguishes operational strategies under different time periods. Furthermore, the impact of tunnel length and traffic flow on the effect of energysaving and system sustainability of the proposed method was assessed. The results show that when using the proposed method, the energy-savings in tunnel lighting could be between about 50% and 60% for a daily traffic volume between 750 and 2500 vehicles. The results also show that the switching frequency of the lighting system is significantly reduced, which would significantly enhance the sustainability of the lighting system.
Keywords: Data mining | Energy management | Intelligent control | Tunnel lighting
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi