دانلود و نمایش مقالات مرتبط با دانلود مقاله یادگیری عمیق با ترجمه فارسی::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی
نتیجه جستجو - دانلود مقاله یادگیری عمیق با ترجمه فارسی

تعداد مقالات یافته شده: 10
ردیف عنوان نوع
1 سرمایه گذاری مالی بلاکچین برمبنای الگوریتم شبکه یادگیری عمیق
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 11 - تعداد صفحات فایل doc فارسی: 30
به منظور مطالعه استفاده از یادگیری عمیق برای پردازش داده های مالی، پیشنهاد می شود که می توان از فناوری مرتبط با شبکه عصبی و یادگیری عمیق برای داده های مالی استفاده کرد و از شاخص واقعی سهام و داده های آتی برای بررسی تاثیر کاربرد شبکه عصبی و یادگیری عمیق استفاده کرد. درابتدا نظریه و مدل یادگیری عمیق و شبکه عصبی با جزئیات معرفی می شوند. سپس از یک شبکه عصبی ساده و مدل یادگیری عمیق در شاخص سهام و پیش بینی قیمت آتی استفاده می شود. داده های استفاده شده در داده های ورودی به مدل شامل قیمت یک سهام در معامله جاری و برخی شاخص های داده ای و قیمت بسته شدن یک سهام در زمان بعدی می شود. کاهش قیمت در خروجی منعکس خواهد شد. اگر خروجی برای 1 بالا و برای صفر پایین باشد، داده های جدید پس از راه اندازی مدل وارد خواهند شد. نهایتا" جهت قضاوت روی تاثیر کاربرد مدل، می توان پس از مقایسه e و تحلیل تاثیر کاربرد مدل، داده های خروجی را با داده های واقعی مقایسه کرد. نتایج نشان می دهند که تحقیق انجام شده در این مطالعه می تواند به سرمایه گذاران کمک کند تا یک مدل سرمایه گذاری خودکار و راهبرد سرمایه گذاری در بازار سهام بسازند. از این سازه می توان برای ارجاع جهت بهبود راهبرد سرمایه گذاری سرمایه گذاران و نرخ بازگشت استفاده کرد.
کلیدواژه ها: یادگیری عمیق | سرمایه گذاری در بازار بورس | شبکه عصبی | سرمایه گذاری مالی
مقاله ترجمه شده
2 کمترین از دست دادن حاشیه برای تشخیص چهره عمیق
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 24
تشخیص چهره موفقیت بزرگی به دست آورده است که دلیل اصلی آن توسعه سریع شبکه های عصبی عمیق (DNN) در سال های اخیر است. کارکردهای مختلف ازدست دادن (اتلاف) در یک شبکه عصبی عمیق قابل استفاده است که منجر به عملکرد متفاوتی می شود. اخیراً برخی از کارکردهای تلفات پیشنهاد داده شده است. با این حال، آن ها نمی توانند مساله جهت گیری حاشیه ای را که در مجموعه داده های غیر متعادل وجود دارد حل کنند. در این مقاله حل مساله تمایل حاشیه ای را با تعیین یک حاشیه حداقلی برای تمامی زوج کلاس ها پیشنهاد می دهیم. ما تابع اتلاف جدیدی به نام حداقل اتلاف حاشیه ای (MML) پیشنهاد می دهیم که هدف آن گسترش محدوده آن هایی است که به زوج های مرکزی دسته بیش از حد نزدیک می شوند تا قابلیت متمایز کننده ویژگی های عمیق را ارتقاء دهد. تابع MML همراه با توابع Softmax Loss و Centre Loss بر فرآیند آموزش نظارت می کنند تا حاشیه های تمامی دسته ها را صرف نظر از توزیع دسته آن ها مورد نظارت قرار دهند. ما تابع MML را در پلتفورم Inception-ResNet-v1 پیاده سازی می کنیم و آزمایش های گسترده ای را بر روی هفت مجموعه داده تشخیص چهره انجام می دهیم که شامل MegaFace، FaceScrub، LFW، SLLFW، YTF، IJB-B و IJB-C است. نتایج تجربی نشان می دهد که تابع از دست دادن MML پیشنهادی منجر به حالت جدیدی در تشخیص چهره می شود و اثر منفی جهت گیری حاشیه ای را کاهش می دهد.
کلید واژه ها :یادگیری عمیق | شبکه های عصبی باز رخدادگر (CNN) | تشخیص چهره| کمترین از دست دادن حاشیه ای (MML)
مقاله ترجمه شده
3 روش یادگیری متخاصم عمیق و چند مرحله ای ، برای باز شناسی شخص مبتنی بر ویدئو
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 13 - تعداد صفحات فایل doc فارسی: 42
بازشناسی شخص (re-ID) بر مبنای ویدئو را میتوان به عنوان فرآیند تطبیق تصویر یک فرد از طریق دیدهای مختلف دوربین که به وسیله ی تصاویر ویدئویی ناهم راستا گرفته شده است، در نظر گرفت. روش هایی که برای اینکار وجود دارند، از سیگنال های نظارتی برای بهینه سازی فضای پیش روی دوربین استفاده نموده که تحت این شرایط، فاصله ی بین ویدئوها بیشینه سازی/کمینه سازی میشود. البته این کار باعث شده تا برچسب گذاری افراد در سطح دید های ویدئو بسیار زیاد شده و باعث شده تا نتوان آنها را به خوبی بر روی دوربین های شبکه بندی شده ی بزرگ مقیاس بندی کرد. همچنین خاطر نشان شده است که یادگیری نمایش های مختلف ویدئویی و آنهم به وسیله ی عدم تغییر دید دوربین را نمیتوان انجام داد چرا که ویژگی های تصویر، هر کدام دارای توزیع های مختلف مختص به خود میباشند. بنابراین تطبیق ویدئوها برای باز شناسی افراد، نیاز به مدل هایی انعطاف پذیر برای بدست آوردن پویایی های موجود در مشاهدات ویدئویی و یادگیری دیدهای ثابت از طریق دسترسی به نمونه های آموزشی برچسب دار و محدود دارد. در این مقاله قصد داریم یک روش مبتنی بر یادگیری عمیق چند مرحله ای را برای باز شناسی یک فرد بر مبنای ویدئو ارائه دهیم و بتوانیم به یادگیری دیدهای قابل قیاسی از این فرد که متمایز هستند بپردازیم. روش پیشنهادی را بر روی شبکه های عصبی باز رخداد گر متغیر (VRNN) توسعه داده ایم و آنرا به منظور ایجاد متغیر های پنهان با وابستگی های موقت که بسیار متمایز بوده ولی در تطبیق تصاویر فرد از نظر دید ثابت میباشد، مورد یادگیری قرار داده ایم. آزمایش های وسیعی را بر روی سه مجموعه ی داده ای بنچ مارک انجام داده ایم و به صورت تجربی به اثبات قابلیت روش پیشنهادی مان در ایجاد ویژگی های موقتی و با یک دید ثابت و کارائی بالایی که به وسیله ی آن بدست آمده است خواهیم پرداخت.
کلمات کلیدی: باز شناسی شخص مبتنی بر ویدئو | شبکه های عصبی باز رخدادگر متغیر | یادگیری متخاصم
مقاله ترجمه شده
4 سریع‌ترین واسط مغز و کامپیوتر جهان: ترکیب کد EEG2 با یادگیری عمیق
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 15 - تعداد صفحات فایل doc فارسی: 29
در این مقاله روش جدیدی بر اساس یادگیری عمیق برای کدگشایی اطلاعات حسیِ حاصل از الکتروانسفالوگرام‌هایی (EEG) که به صورت غیرتهاجمی ثبت شده‌اند، ارائه می‌دهیم. این روش را می‌توان در رابط‌های مغز و کامپیوتر (BCI) غیرفعال برای پیش‌بینی ویژگی‌های یک محرک بصری که فرد مشاهده می‌کند، به کار برد و یا می‌توان برای کنترل فعالانه‌ی کاربردهای BCI از آن استفاده کرد. هر دو سناریو مورد آزمایش قرار گرفتند، بدین ترتیب که متوسط نرخ انتقال اطلاعات (ITR) برابر با 701 بیت بر دقیقه برای روش BCI غیرفعال به دست آمد و بهترین سوژه به ITR آنلاین برابر با 1237 بیت بر دقیقه دست یافت. علاوه بر این، امکان تشخیص 500000 محرک بصری مختلف بر اساس تنها 2 ثانیه از اطلاعات EEG با دقت تا 100% را میسر ساخت. هنگامی که این روش در یک BCI خودگام آسنکرون برای هجی کردن به کار برده شد، متوسط نرخ سودمندی برابر با 175 بیت بر دقیقه به دست آمد که متناظر با به طور متوسط 35 حرف بدون خطا در هر دقیقه است. از آن‌جایی که اطلاعاتی که این روش استخراج می‌کند، بیش از سه برابرِ سریع‌ترین روش قبلی است، نشان می‌دهیم که سیگنال‌های EEG اطلاعات بیش‌تری نسبت به مقداری که معمولا فرض می‌شود، انتقال می‌دهند. در نهایت یک اثر حداکثر مشاهده کردیم به طوری که محتوای اطلاعات در EEG از آن چیزی که برای کنترل BCI لازم است، فراتر می‌رود و بنابراین در این مورد بحث می‌کنیم که آیا تحقیقات BCI به نقطه‌ای رسیده‌اند که دیگر نمی‌توان عملکرد کنترل BCI بصری غیرتهاجمی را به طور قابل توجهی بهبود بخشید یا خیر.
مقاله ترجمه شده
5 تحلیل احساسات مبتنی بر یادگیری عمیق در متن رومی اردو
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 5 - تعداد صفحات فایل doc فارسی: 9
آنالیز احساسات با توجه به رویکرد همه جانبه در آنالیز احساسات کاربران شبکه های اجتماعی مختلف، انجمن ها، سایت های بازاریابی الکترونیکی و وبلاگ ها، اهمیت زیادی دارد. داده های مربوط به احساسات در وب اهمیت زیادی دارد و بر مشتریان، خوانندگان و شرکت های تجاری تأثیر می گذارد. شبکه عصبی مکرر به طور گسترده ای در انجام وظایف پردازش زبان طبیعی مورد استفاده قرار گرفته است، زیرا برای مدل سازی داده های متوالی به صورت موثر طراحی شده است.
در این مقاله از مدل عصبی عمیق حافظه کوتاه-طولانی مدت (LSTM) استفاده شده است. توانایی فوق العاده ای در ضبط اطلاعات دور برد و حل مشکل کاهش گرادیان و همچنین ارائه اطلاعات متنی آتی، معناشناسی توالی لغات با شکوه دارد. این مقاله پایه و اساس تطبیق روش های یادگیری عمیق در آنالیز رومن اردو است. نتایج تجربی نشان داد که مدل ما دقت قابل توجهی دارد و دقت بیشتری از روش های یادگیری ماشین دارد.
کليدواژه: شبکه عصبی مکرر (RNN)| حافظه کوتاه-بلند مدت (LSTM) | آنالیز معنایی رومن اردو | تعبیه لغت
مقاله ترجمه شده
6 یادگیری عمیق برای تشخیص و ردیابی شیء متحرک از یک دوربین مجزا در وسایل نقلیه هوایی بدون سرنشین
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 6 - تعداد صفحات فایل doc فارسی: 30
وسایل نقلیه هوایی بدون سرنشین در یک گستره وسیعی از کاربردهای شهری و نظامی به عمومیت و محبوبیت دست یافته اند. چنین علاقه نوظهور، توسعه سیستمهای اجتناب از برخورد موثر را که به ویژه در شرایط شلوغ هوایی مهم و اساسی هستند موجب می شود. به دلیل محدودیت های هزینه ای و وزنی موجود در بار مفید وسایل نقلیه هوایی بدون سرنشین، حسگرهای نوری، دوربین های ساده دیجیتال به صورت گسترده ای برای سیستمهای اجتناب از برخورد در وسایل نقلیه هوایی بدون سرنشین استفاده می شوند. این امر مستلزم تشخیص حرکت شیء و الگوریتمهای ردیابی از یک ویدیو می باشد که می تواند به صورت کارآمد به صورت آنبورد (در – صفحه) اجرا شود. در این مقاله، ما یک دیدگاه جدیدی برای تشخیص و ردیابی وسایل نقلیه هوایی از یک دوربین مجزای نصب شده روی یک وسیله نقلیه بدون سرنشین متفاوت ارائه می کنیم. در ابتدا ما حرکات زمینه ای را از طریق یک مدل تبدیل نمایی تخمین می زنیم و سپس شیء متحرک را در یک تصویر زمینه ای ازطریق دسته بندی کننده یادگیری عمیق که روی سری های داده ای برچسب گذاری شده به صورت دستی راه اندازی شده است شناسایی می کنیم. برای هر شیء متحرک، ما مشخصه مکانی – زمانی را ازطریق انطباق جریان نوری پیدا می کنیم و سپس آنها را برمبنای الگوهای حرکتی شان درمقایسه با پس زمینه پالایش می کنیم. از فیلتر کالمن روی اشیای متحرک پالایش شده جهت بهبود سازگاری زمانی دربین تشخیص های موردنظر استفاده می شود. این الگوریتم روی سری های داده ای ویدیویی گرفته شده از یک وسیله نقلیه هوایی بدون سرنشین اعتبارسنجی می شود. نتایج نشان می دهند که الگوریتم ما می تواند به صورت موثری وسایل نقلیه هوایی بدون سرنشین کوچک را با منابع محاسباتی محدود تشخیص داده و ردیابی کند.
مقاله ترجمه شده
7 مروری بر یادگیری عمیق برای داده های بزرگ
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 12 - تعداد صفحات فایل doc فارسی: 44
یادگیری عمیق، به عنوان یکی از مهم ترین تکنیک های یادگیری ماشینی، موفقیت های زیادی در بسیاری از برنامه های کاربردی مانند تحلیل تصویر، تشخیص گفتار و درک متن بدست اورده است . انها از استراتژی های نظارت شده و بی نظیر برای یادگیری چندین سطح و ویژگی های معماری سلسله مراتبی برای وظایف طبقه بندی و تشخیص الگو استفاده می کنند. پیشرفت های اخیر در شبکه های حسگر و فناوری های ارتباطی، قادر به جمع آوری داده های بزرگ می باشد. اگر چه داده های بزرگ فرصت های خوبی برای بسیاری از زمینه ها از جمله تجارت الکترونیک، کنترل صنعتی و پزشکی هوشمند فراهم می اورند، اما در زمینه داده کاوی و پردازش اطلاعات به دلیل ویژگی های حجم زیاد، انواع مختلف، سرعت زیاد و حقیقت بزرگ، چالش های فراوانی را به همراه خواهند داشت. در چند سال گذشته، یادگیری عمیق در راه حل های تحلیلی داده های بزرگ نقش مهمی را ایفا کرده است. در این مقاله، تحقیقات انجام شده درباره مدل های یادگیری عمیق برای یادگیری ویژگی های بزرگ داده ها در اینده را مرور می کنیم. علاوه بر این، ما با توجه به چالش های باقیمانده به یادگیری عمیق داده های بزرگ و بحث در مورد موضوعات آینده اشاره می کنیم. Furthermore, we point out the remaining challenges of big data deep learning and discuss the future topics.
کلمات کلیدی: یادگیری عمیق | داده های بزرگ | رمزگذاران خودکار انباشته شده | شبکه های اعتقادی عمیق | شبکه های عصبی کانولوشن | شبکه عصبی مرتب
مقاله ترجمه شده
8 روش های یادگیری عمیق برای تشخیص و تقطیع خودکار چندساختاری قلبی MRI: آیا مشکل حل شده است؟
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 12 - تعداد صفحات فایل doc فارسی: 39
تفسیر بطن چپ، میوکارد و بطن راست از تصاویر تشدید مغناطیسی قلب (MRI cine 2D چندبخشی (چندبرشی)) روش بالینی رایجی برای رسیدن به تشخیص می باشد. به همین دلیل اتوماسیون امور مربوطه طی چند دهه ی اخیر مورد موضوع پژوهش های بسیاری بوده است. ما در این مقاله مجموعه داده ی «چالش تشخیص قلبی خودکار» (ACDC)، بزرگرترین مجموعه داده ی عمومی و تفسیرشده به منظور ارزیابی MRI قلبی (CMR) را ارائه می کنیم. این مجموعه داده شامل داده هایی از ۱۵۰ داده خوانی چنددستگاهی CMRI مبتنی بر اندازه گیری های مرجع و دسته بندی های صورت گرفته توسط دو متخصص پزشکی می باشد. هدف اصلی این مقاله، اندازه گیری توانایی روش های یادگیری عمیق نوین در ارزیابی CMRI، یعنی تقطیع میوکارد و دو بطن و نیز دسته بندی پاتولوژی هاست. ما پیرو چالش 2017 MICCAI-ACDC، نتایجی را از روش-های یادگیری عمیق ارائه شده توسط نه گروه پژوهشی در خصوص امر تقطیع و چهار گروه در خصوص امر دسته بندی ارائه می کنیم. نتایج نشان می دهند که بهترین روش ها قادرند تحلیل تخصیص را بازتولید (تکرار) کرده و به تبع آن به مقدار متوسط 0.97 برای امتیاز همبستگی استخراج خودکار شاخص های بالینی و دقت 0.96 برای تشخیص خودکار دست پیدا کنند. این نتایج به وضوح راه گشای تحلیل کاملاْ خودکار و بسیار دقیق CMRI قلبی خواهند بود. ما هم چنین سناریوهایی را نشان می دهیم که روش های یادگیری عمیق در آنها ناموفق هستند. نتایج دقیق و مفصل و نیز مجموعه داده، هر دو به صورت آنلاین در دسترس عموم قرار دارند، و پلتفرم برای ارائه ی نتایج جدید باز می باشد.
اصطلاحات تخصصی: تقطیع و تشخیص قلبی | یادگیری عمیق | MRI | بطن های چپ و راست | میوکارد.
مقاله ترجمه شده
9 یادگیری عمیق(ژرف) در تجزیه و تحلیل کلان داده ( داده های بزرگ): یک مطالعه تطبیقی
سال انتشار: 2017 - تعداد صفحات فایل pdf انگلیسی: 13 - تعداد صفحات فایل doc فارسی: 31
روش های فراگیری عمیق به طور گسترده ای در زمینه های مختلف علوم و مهندسی مانند تشخیص گفتار، طبقه بندی تصویر و روش های یادگیری در پردازش زبان مورد استفاده قرار می گیرد. به طور مشابه، تکنیک های پردازش داده های سنتی محدودیت های زیادی برای پردازش مقدار زیادی داده ها دارند. علاوه بر این، تجزیه و تحلیل داده های بزرگ نیاز به الگوریتم های جدید و پیچیده بر اساس تکنیک های یادگیری ماشین و عمیق برای پردازش داده ها در زمان واقعی با دقت و کارایی بالا دارد . با این حال، به تازگی، تحقیقات مختلف تکنیک های یادگیری عمیق با استفاده از یادگیری ترکیبی و مکانیسم های آموزش پردازش داده ها با سرعت بالا تلفیق شده است. بنابراین بیشتر این تکنیک ها به سناریوها اختصاص دارد و براساس فضای بردار، عملکرد ضعیف در سناریوهای عمومی و ویژگی های یادگیری را در داده های بزرگ نشان می دهد. علاوه بر این، یکی از دلایل چنین ضعف، دخالت زیاد انسانها در طراحی الگوریتم های پیچیده و بهینه شده بر اساس تکنیک های یادگیری ماشین و عمیق است. در این مقاله، ما روشی را برای مقایسه روش های مختلف یادگیری عمیق برای پردازش داده های عظیم با تعداد زیادی از نورون ها و لایه های پنهان ارائه می دهیم. مطالعه تطبیقی نشان می دهد که تکنیک های یادگیری عمیق می تواند با معرفی چندین روش در ترکیب با تکنیک های آموزش تحت نظارت و بدون نظارت ایجاد شود.
کلمات کلیدی: داده های بزرگ | یادگیری عمیق | شبکه های اعتقاد عمیق | شبکه های عصبی تکاملی
مقاله ترجمه شده
10 یک مرور بر روی یادگیری عمیق در تحلیل تصویر پزشکی
سال انتشار: 2017 - تعداد صفحات فایل pdf انگلیسی: 38 - تعداد صفحات فایل doc فارسی: 74
الگوریتم های یادگیری عمیق، به ویژه در شبکه های حلقه ای، به سرعت درحال تبدیل شدن به یک روش انتخاب برای تحلیل تصاویر پزشکی هستند. این مقاله مفاهیم اصلی یادگیری عمیق مربوط به تحلیل تصویر پزشکی را بررسی کرده و بیش از 300 کار سهیم در این رشته را که اکثر آنها در سال گذشته ظهور یافته اند خلاصه می کند. ما استفاده از یادگیری عمیق را برای دسته بندی تصویر، تشخیص عضو، بخش بندی، ثبت، و سایر کارها بررسی می کنیم. مرورهای اجمالی روی مطالعات موجود در هر حوزه کاربردی مثل عصب، شبکیه، ریه، آسیب شناسی دیجیتال، سینه، قلبی، شکمی و عضلانی ارائه می شود. ما این مقاله را با ارائه خلاصه ای از جدیدترین فناوری ها، یک بحث اساسی روی چالش های باز و مسیرهایی برای تحقیقات آتی به پایان می رسانیم.
کلیدواژه ها: یادگیری عمیق | شبکه های عصبی حلقه ای | تصویربرداری پزشکی | مرور
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi