دانلود و نمایش مقالات مرتبط با شبکه عصبی مصنوعی::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - شبکه عصبی مصنوعی

تعداد مقالات یافته شده: 73
ردیف عنوان نوع
1 بهبود تولید بیودیزل با کمک اولتراسونیک حاصل از ضایعات صنعت گوشت (چربی خوک) با استفاده از نانوکاتالیزور اکسید مس سبز: مقایسه سطح پاسخ و مدل سازی شبکه عصبی
سال انتشار: 2021 - تعداد صفحات فایل pdf انگلیسی: 11 - تعداد صفحات فایل doc فارسی: 25
سوخت زیستی سبز ، تمیز و پایدار تنها گزینه به منظور کاهش کابرد سوخت های فسیلی ، پاسخگویی به تقاضای زیاد انرژی و کاهش آلودگی هوا است. تولید بیودیزل زمانی ارزان می شود که از یک پیش ماده ارزان ، کاتالیزور سازگار با محیط زیست و فرآیند مناسب استفاده کنیم. پیه خوک از صنعت گوشت حاوی اسید چرب بالا است و به عنوان یک پیش ماده موثر برای تهیه بیودیزل کاربرد دارد. این مطالعه بیودیزل را از روغن پیه خوک از طریق فرآیند استری سازی دو مرحله ای با کمک اولتراسونیک و کاتالیزور تولید می کند. عصاره Cinnamomum tamala (C. tamala) برای تهیه نانوذرات CuO مورد استفاده قرار گرفت و با استفاده از طیف مادون قرمز ، پراش اشعه ایکس ، توزیع اندازه ذرات ، میکروسکوپ الکترونی روبشی و انتقال مشخص شد. تولید بیودیزل با استفاده از طرح Box-Behnken (BBD) و شبکه عصبی مصنوعی (ANN) ، در محدوده متغیرهای زمان اولتراسونیک (us )(20-40 min)، بارگیری نانوکاتالیزور 1-3) CuO درصد وزنی( ، و متانول به قبل از نسبت مولی PTO (10:1e30:1) مدلسازی شد. آنالیز آماری ثابت کرد که مدل سازی شبکه عصبی بهتر از BBD است. عملکرد بهینه 97.82٪ با استفاده از الگوریتم ژنتیک (GA) در زمان US: 35.36 دقیقه ، بار کاتالیزور CuO: 2.07 درصد وزنی و نسبت مولی: 29.87: 1 به دست آمد. مقایسه با مطالعات قبلی ثابت کرد که اولتراسونیک به میزان قابل توجهی موجب کاهش بار نانوکاتالیزور CuO می شود ، و نسبت مولی را افزایش می دهد و این فرایند را بهبود می بخشد.
کلمات کلیدی: چربی خوک | التراسونیک | اکسید مس | سنتز سبز | شبکه عصبی | سطح پاسخ
مقاله ترجمه شده
2 پیش بینی قیمت پایانی سهام با استفاده از روشهای یادگیری ماشینی
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 8 - تعداد صفحات فایل doc فارسی: 12
پیش بینی دقیق بازگشت های بازار سهام به دلیل ماهیت فرّار و غیرخطی بازارهای مالی بورس، کاری بسیار چالش انگیز است. اثبات شده است که با معرفی هوش مصنوعی و قابلیت های محاسباتی افزون، روشهای برنامه ریزی شده برای پیش بینی بورس در پیش بینی قیمت سهام کارآمدتر هستند. در این کار تحقیقی، از روشهای شبکه عصبی مصنوعی و جنگل تصادفی برای پیش بینی قیمت نهایی روز بعدی برای شرکتهای متعلق به بخشهای کاری مختلف استفاده شده است. از داده های مالی مربوط به قیمت های باز، بالا، پایین و نهایی سهام برای خلق متغیرهای جدیدی استفاده می شود که این متغیرها به عنوان ورودی های مدل به کار می روند. مدلها با استفاده از شاخص های راهبردی استاندارد RMSE و MAPE ارزیابی می شوند. مقادیر پایین این دو شاخص نشان می دهد که این مدلها در پیش بینی قیمت نهایی سهام کارآمد هستند.
کلیدواژه ها: رگراسیون جنگل تصادفی | شبکه عصبی مصنوعی | پیش بینی بازار سهام
مقاله ترجمه شده
3 A different sleep apnea classification system with neural network based on the acceleration signals
یک سیستم طبقه بندی sleep apnea متفاوت با شبکه عصبی مبتنی بر سیگنال های شتاب-2020
Background and objective: The apnea syndrome is characterized by an abnormal breath pause or reduction in the airflow during sleep. It is reported in the literature that it affects 2% of middle-aged women and 4% of middle-aged men, approximately. This study has vital importance, especially for the elderly, the disabled, and pediatric sleep apnea patients. Methods: In this study, a new diagnostic method is developed to detect the apnea event by using a microelectromechanical system (MEMS) based acceleration sensor. It records the value of acceleration by measuring the movements of the diaphragm in three axes during the respiratory. The measurements are carried out simultaneously, a medical spirometer (Fukuda Sangyo), to test the validity of measurement results. An artificial neural network model was designed to determine the apnea event. For the number of neurons in the hidden layer, 1-3-5-10-18-20-25 values were tried, and the network with three hidden neurons giving the most suitable result was selected. In the designed ANN, three layers were formed that three neurons in the hidden layer, the two neurons at the input, and two neurons at the output layer. Results: A study group was formed of 5 patients (having different characteristics (age, height, and body weight)). The patients in the study group have sleep apnea (SA) in different grades. Several 12.723 acceleration data (ACC) in the XYZ-axis from 5 different patients are recorded for apnea event training and detection. The measured accelerometer (ACC) data from one of the patients (called H1) are used to train an ANN. During the training phase, MSE is used to calculate the fitness value of the apnea event. Then Apnea event is detected successfully for the other patients by using ANN trained only with H1’s ACC data. Conclusions: The sleep apnea event detection system is presented by using ANN from directly acceleration values. Measurements are performed by the MEMS-based accelerometer and Industrial Spirometer simultaneously. A total of 12723 acceleration data is measured from 5 different patients. The best result in 7000 iterations was reached (the number of iterations was tried up to 10.000 with 1000 steps). 605 data of only H1 measurements are used to train ANN, and then all data used to check the performance of the ANN as well as H2, H3, H4, and H5 measurement results. MSE performance benchmark shows us that trained ANN successfully detects apnea events. One of the contributions of this study to literature is that only ACC data are used in the ANN training step. After training for one patient, the ANN system can monitor the apnea event situation on-line for others.
Keywords: Sleep apnea | Acceleration sensor | Acceleration data | Artificial neural network | Medical decision making
مقاله انگلیسی
4 Modeling of forward osmosis process using artificial neural networks (ANN) to predict the permeate flux
مدل سازی فرآیند اسمزوز رو به جلو با استفاده از شبکه های عصبی مصنوعی (ANN) برای پیش بینی شار نفوذ-2020
Artificial neural networks (ANN) are black box models that are becoming more popular than transport-based models due to their high accuracy and less computational time in predictions. The literature shows a lack of ANN models to evaluate the forward osmosis (FO) process performance. Therefore, in this study, a multi-layered neural network model is developed to predict the permeate flux in forward osmosis. The developed model is tested for its generalization capability by including lab-scale experimental data from several published studies. Nine input variables are considered including membrane type, the orientation of membrane, molarity of feed solution and draw solution, type of feed solution and draw solution, crossflow velocity of the feed solution, and the draw solution and temperature of the feed solution and the draw solution. The development of optimum network architecture is supported by studying the impact of the number of neurons and hidden layers on the neural network performance. The optimum trained network shows a high R2 value of 97.3% that is the efficiency of the model to predict the targeted output. Furthermore, the validation and generalized prediction capability of the model is tested against untrained published data. The performance of the ANN model is compared with a transport-based model in the literature. A simple machine learning technique such as a multiple linear regression (MLR) model is also applied in a similar manner to be compared with the ANN model. ANN demonstrates its ability to form a complex relationship between inputs and output better than MLR.
Keywords: Artificial neural network | Forward osmosis | Water treatment | Desalination | Machine learning
مقاله انگلیسی
5 Development of a chemometric-assisted spectrophotometric method for quantitative simultaneous determination of Amlodipine and Valsartan in commercial tablet
توسعه یک روش اسپکتروفتومتری با کمک شیمیایی برای تعیین کمی همزمان آملودیپین و والرسارتان در قرص تجاری-2020
In this study, two drugs named Amlodipine (AML) and Valsartan (VAL) related to the high blood pressure were simultaneously determined in synthetic mixtures and Valzomix tablet. For this purpose, the chemometric-assisted spectrophotometric method was developed without any prepreparation. Artificial intelligence techniques, including artificial neural network (ANN) and least squares support vector machine (LS-SVM) as chemometrics procedures were proposed. Feed-forward back-propagation neural network (FFBP-NN) with two different algorithms, containing Levenberg–Marquardt (LM) and gradient descent with momentum and adaptive learning rate backpropagation (GDX) was applied. To select the best model, several layers and neurons were investigated. The results revealed that layer = 5 with 6 neurons and layer = 2 with 10 neurons had lower mean square error (MSE) (1.41 × 10−24, 1.16 × 10-23) for AML and VAL, respectively. In the LS-SVM method, gamma (γ) and sigma (σ) parameters were optimized. γ and σ were obtained 50, 30 and 40, 40 with the root mean square error (RMSE) of 0.4290 and 0.5598 for AML and VAL, respectively. Analysis of the pharmaceutical formulation was evaluated through the chemometrics methods and high-performance liquid chromatography (HPLC) as a reference technique. The obtained results were statistically compared with each other using the one-way analysis of variance (ANOVA) test. There were no significant differences between them and the proposed method was satisfactory for estimating the components of the Valzomix tablet.
Keywords: Spectrophotometry | Amlodipine | Valsartan | Artificial neural network | Least squares support vector machine
مقاله انگلیسی
6 Wake modeling of wind turbines using machine learning
مدل سازی توربین های بادی با استفاده از یادگیری ماشین-2020
In the paper, a novel framework that employs the machine learning and CFD (computational fluid dynamics) simulation to develop new wake velocity and turbulence models with high accuracy and good efficiency is proposed to improve the turbine wake predictions. An ANN (artificial neural network) model based on the backpropagation (BP) algorithm is designed to build the underlying spatial relationship between the inflow conditions and the three-dimensional wake flows. To save the computational cost, a reduced-order turbine model ADM-R (actuator disk model with rotation), is incorporated into RANS (Reynolds-averaged Navier-Stokes equations) simulations coupled with a modified k − ε turbulence model to provide big datasets of wake flow for training, testing, and validation of the ANN model. The numerical framework of RANS/ADM-R simulations is validated by a standalone Vestas V80 2MW wind turbine and NTNU wind tunnel test of double aligned turbines. In the ANN-based wake model, the inflow wind speed and turbulence intensity at hub height are selected as input variables, while the spatial velocity deficit and added turbulence kinetic energy (TKE) in wake field are taken as output variables. The ANN-based wake model is first deployed to a standalone turbine, and then the spatial wake characteristics and power generation of an aligned 8-turbine row as representation of Horns Rev wind farm are also validated against Large Eddy Simulations (LES) and field measurement. The results of ANNbased wake model show good agreement with the numerical simulations and measurement data, indicating that the ANN is capable of establishing the complex spatial relationship between inflow conditions and the wake flows. The machine learning techniques can remarkably improve the accuracy and efficiency of wake predictions.
Keywords: Wind turbine wake | Wake model | Artificial neural network (ANN) | Machine learning | ADM-R (actuator-disk model with rotation) | model | Computational fluid dynamics (CFD)
مقاله انگلیسی
7 Analytical study on use of AI techniques in tourism sector for smarter customer experience management
مطالعه تحلیلی در مورد استفاده از تکنیک های هوش مصنوعی در بخش گردشگری برای مدیریت دقیقتر تجربه مشتری-2020
Artificial Intelligence is the new prime factor for paradigm shift of the new age technologies. It has created a new realm in every field- from education to entertainment or from biotechnology to manufacturing industry. Though tourism is a late runner in this race, but this sector has also witnessed a huge change with the magical touch of AI. This sector being one of the highly emerging sectors, contributing very high GDP , has adapted several machine learning techniques or data analytics, which has made tourism model smarter and dynamic. In India , tourism has an ample scope to grow and Indian tourism sectors are also adapting several popular AI techniques like deep learning, Artificial neural network, predictive analytics, robotics or new technologies like virtual reality or augmented reality. This technological adaptation has made their services much better, heled in dynamic pricing, or for smart customer experience management. This paper has conducted a study on Indian tourism sectors providing online services and discusses about the current AI technologies used by them while exploring the pros and cons faced by them . The paper is alienated in three different segments- section 1 contains introduction part, section 2 discusses about related works in similar area, third section deliberates about different AI techniques adapted by Indian tourism sectors along with their pro and cons.
Keywords : ChatBot | Artificial neural network | Machine Learning | Robotics | Predictive Analytics | Recommendation System
مقاله انگلیسی
8 Fatigue life prediction of metallic materials considering mean stress effects by means of an artificial neural network
پیش بینی طول عمر خستگی مواد فلزی با توجه به میانگین اثرات استرس با استفاده از شبکه عصبی مصنوعی-2020
The mean stress effect plays an important role in the fatigue life predictions, its influence significantly changes high-cycle fatigue behaviour, directly decreasing the fatigue limit with the increase of the mean stress. Fatigue design of structural details and mechanical components must account for mean stress effects in order to guarantee the performance and safety criteria during their foreseen operational life. The purpose of this research work is to develop a new methodology to generate a constant life diagram (CLD) for metallic materials, based on assumptions of Haigh diagram and artificial neural networks, using the probabilistic Stüssi fatigue S-N fields. This proposed methodology can estimate the safety region for high-cycle fatigue regimes as a function of the mean stress and stress amplitude in regions where tensile loading is predominance, using fatigue S-N curves only for two stress R-ratios. In this approach, the experimental fatigue data of the P355NL1 pressure vessel steel available for three stress R-ratios (−1, −0.5, 0), are used. A multilayer perceptron network has been trained with the back-propagation algorithm; its architecture consists of two input neurons (σm, N) and one output neuron (σa). The suggested CLD based on trained artificial neural network algorithm and probabilistic Stüssi fatigue fields applied to dog-bone shaped specimens made of P355NL1 steel showed a good agreement with the high-cycle fatigue experimental data, only using the stress R-ratios equal to 0 and −0.5. Furthermore, a procedure for estimating the fatigue resistance reduction factor, Kf , for the fatigue life prediction of structural details (stress R-ratios equal to 0, 0.15 and 0.3) in extrapolation regions is suggested and used to generate the Kf results for stress R-ratios from −1 to 0.3, based on machine learning artificial neural network algorithm.
Keywords: Fatigue | Artificial neural network | Back-propagation algorithm | Stüssi model | Constant life diagram
مقاله انگلیسی
9 Micro-combined heat and power using dual fuel engine and biogas from discontinuous anaerobic digestion
گرما و قدرت میکرو ترکیبی با استفاده از موتور سوخت دوگانه و بیوگاز از هضم بی هوازی ناپیوسته-2020
The modeling of the Micro-CHP unit operating in dual-fuel mode is performed based on experimental results carried out at the laboratory scale. The engine tests were performed on an AVL engine, with a maximum power of 3.5 kW, using conventional diesel as pilot fuel and synthetic biogas as primary fuel. The biogas flow rate is evaluated using the experimental results from the literature, based on the anaerobic digestion in batch reactor of a mixture of 26% of Oat Straw and 74% of Cow Manure, diluted to contain only 4% of volatile solid. The engine operation was modeled using the Artificial Neuron Network (ANN) method. Experimental engine tests were used as a database for training and validation phases of ANN models. Three different ANN models are developed to model respectively the pilot fuel flow rate, the airflow rate and the exhaust gas temperature. Engine power output, biogas flow rate and biogas methane content were used as the same input layer. Given that the evolution of the biogas flow evolves along the entire digestion duration (50 days), the simulation work is performed by varying the number of digesters to be used in parallel mode. It is obtained that the optimal operation condition, minimizing the number of digesters and using less than 10% of the energy from diesel fuel, is to use 5 digesters and run the engine under load of 70%. It is concluded that a micro-CHP unit of 1 kWe, requires a dual fuel generator with a nominal power of 1 kWe, five digesters and a daily availability of effluents of 171 kg/day, consisting of 45 kg/day of oat straw and 126 kg/day of cow manure. It can also produce up to 2.45 kW of thermal power from the exhaust.
Keywords: Micro CHP | Anaerobic digestion | Dual fuel engine | Artificial Neural Network | Cogeneration
مقاله انگلیسی
10 Application of optimized Artificial and Radial Basis neural networks by using modified Genetic Algorithm on discharge coefficient prediction of modified labyrinth side weir with two and four cycles
استفاده از شبکه های عصبی بهینه سازی شده مصنوعی و شعاعی با استفاده از الگوریتم ژنتیک اصلاح شده بر پیش بینی ضریب تخلیه ریزگرد سمت اصلاح شده با دو و چهار چرخه-2020
Determining the discharge coefficient is one of the most important processes in designing side weirs. In this study, the structure of Artificial Neural Network (ANN) and Radial Basis Neural Network (RBNN) methods are optimized by a modified Genetic Algorithm (GA). So two new hybrid methods of Genetic Algorithm Artificial neural network (GAA) and Genetic Algorithm Radial Basis neural network (GARB), were introduced and compared with each other. The modified GA was used to find the neuron number in the hidden layers of the ANN and to find the spread value and the neuron number of the RBNN method, as well. GAA and GARB were tested for predicting the discharge coefficient of a modified labyrinth side weir he GARB method could successfully predict the accurate discharge coefficient even in cases where there is a limited number of train datasets available.
Keywords: Artificial neural network | Discharge coefficient | Hybrid model | Labyrinth side weir | Modified | Genetic algorithm | Radial basis neural network
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi