دانلود و نمایش مقالات مرتبط با طبقه بندی::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی
نتیجه جستجو - طبقه بندی

تعداد مقالات یافته شده: 387
ردیف عنوان نوع
1 Control-Based Algorithms for High Dimensional Online Learning
الگوریتم های مبتنی بر کنترل برای یادگیری آنلاین با ابعاد بالا-2020
In the era of big data, the high-dimensional online learning problems require huge computing power. This paper proposes a novel approach for high-dimensional online learning. Two new algorithms are developed for online high-dimensional regression and classification problems respectively. The problems are formulated as feedback control problems for some low dimensional systems. The novel learning algorithms are then developed via the control problems. Via an efficient polar decomposition, we derive the explicit solutions of the control problems, substantially reducing the corresponding computational complexity, especially for high dimensional largescale data streams. Comparing with conventional methods, the new algorithm can achieve more robust and accurate performance with faster convergence. This paper demonstrates that optimal control can be an effective approach for developing high dimensional learning algorithms. We have also for the first time proposed a control-based robust algorithm for classification problems. Numerical results support our theory and illustrate the efficiency of our algorithm.
Keywords: Classification | high dimensional dataset | model predictive control | online learning | robust control
مقاله انگلیسی
2 Selective sampling and inductive inference: Drawing inferences based on observed and missing evidence
نمونه گیری انتخابی و استنتاج استقرایی: طراحی استنتاج مبتنی بر شواهد مشاهده شده و از دست رفته-2019
We propose and test a Bayesian model of property induction with evidence that has been selectively sampled leading to “censoring” or exclusion of potentially relevant data. A core model prediction is that identical evidence samples can lead to different patterns of inductive inference depending on the censoring mechanisms that cause some instances to be excluded. This prediction was confirmed in four experiments examining property induction following exposure to identical samples that were subject to different sampling frames. Each experiment found narrower generalization of a novel property when the sample instances were selected because they shared a common property (property sampling) than when they were selected because they belonged to the same category (category sampling). In line with model predictions, sampling frame effects were moderated by the addition of explicit negative evidence (Experiment 1), sample size (Experiment 2) and category base rates (Experiments 3–4). These data show that reasoners are sensitive to constraints on the sampling process when making property inferences; they consider both the observed evidence and the reasons why certain types of evidence has not been observed.
Keywords: Inductive reasoning | Property inference | Categorization | Bayesian models
مقاله انگلیسی
3 سیستم پشتیبانی از تصمیم برای خطرات و اقدامات متقابل ایمنی جاده ای اروپا
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 8 - تعداد صفحات فایل doc فارسی: 32
سیستم پشتیبانی از تصمیم درباره ایمنی جاده ای اروپا (roadsafety-dss.eu) یک سیستم نوآورانه است که شواهد و مدارک دسترس پذیری را درباره گستره وسیعی از خطرات جاده ای و اقدامات متقابل امکانپذیر فراهم می کند. این مقاله پایه و اساس علمی سیستم پشتیبانی از تصمیم را توصیف می کند. ساختار موجود در سیستم پشتیبانی از تصمیم شامل (1) یک طبقه بندی که به شناسایی عوامل خطر و اقدامات متقابل آن می پردازد و آنها را به همدیگر مرتبط می کند، (2) یک مجموعه ای از مطالعات، و (3) خلاصه هایی که تاثیرات تخمین زده شده در منابع علمی را برای هر عامل و سنجه خطر خلاصه بندی می کنند و (4) یک ابزار ارزیابی کارآمدی اقتصادی (محاسبه گر E3) می شود. سیستم پشتیبانی از تصمیم در یک ابزار نوین مبتنی بر وب با فصل مشترک بسیار انسانی اجرا می شود که به کاربران اجازه می دهد تا مرور اجمالی سریعی داشته باشند یا نتایج هر مطالعه را برطبق نیازهای مخصوص آنها عمیق تر بررسی کنند.
کلیدواژه ها: اقدامات متقابل ایمنی جاده | خطرات جاده ای | سودمندی | سیستم آنلاین | مرور | هزینه – سود
مقاله ترجمه شده
4 Shape analysis of 3D nanoscale reconstructions of brain cell nuclear envelopes by implicit and explicit parametric representations
تجزیه و تحلیل 3D بازسازی شکل در مقیاس نانو سلول های مغز پاکت های هسته ای توسط نمایندگی پارامتری ضمنی و صریح-2019
Shape analysis of cell nuclei is becoming increasingly important in biology and medicine. Recent results have identified that large variability in shape and size of nuclei has an important impact on many biological processes. Current analysis techniques involve automatic methods for detection and segmentation of histology and microscopy images, but are mostly performed in 2D. Methods for 3D shape analysis, made possible by emerging acquisition methods capable to provide nanometric-scale 3D reconstructions, are still at an early stage, and often assume a simple spherical shape. We introduce here a framework for analyzing 3D nanoscale reconstructions of nuclei of brain cells (mostly neurons), obtained by semiautomatic segmentation of electron micrographs. Our method considers two parametric representations: the first one customizes the implicit hyperquadrics formulation and it is particularly suited for convex shapes, while the latter considers a spherical harmonics decomposition of the explicit radial representation. Point clouds of nuclear envelopes, extracted from image data, are fitted to the parameterized models which are then used for performing statistical analysis and shape comparisons. We report on the analysis of a collection of 121 nuclei of brain cells obtained from the somatosensory cortex of a juvenile rat.
Keywords: Shape analysis | Nanoscale cell reconstruction | Nuclear envelopes | Cell classification
مقاله انگلیسی
5 Neural trees with peer-to-peer and server-to-client knowledge transferring models for high-dimensional data classification
درختان عصبی با دانش همتا به همتا و سرور به مشتری انتقال مدل برای طبقه بندی داده های بعدی-2019
Classification of the high-dimensional data by a new expert system is followed in the current paper. The proposed system defines some non-disjoint clusters of highly relevant features with the least inner- redundancy. For each cluster, a neural tree is implemented exploiting an Extreme Learning Machine (ELM) together an inference engine in any node. The derived classification rules from ELM are stored in the rule- base of the inference engine to recognize the classes. A majority voting is used to unify the results of the different neural trees. This structure is refereed as the Forest of Extreme Learning Machines with Rule- base Transferring (FELM-RT). The contribution of FELM-RT is to decrease the duplicated computations by using two novel interaction models between the neural trees. In the first interaction model, namely Peer- to-Peer (P2P) model, each node can share its rule-base with the other nodes of the various neural trees. In the second that is referred as Server-to-Client (S2C) model, a neural tree that works on a cluster with the best relevancy and redundancy, shares the rules with the other neural trees. In both of the models, a fuzzy aggregation technique is used to adjust the certainty of the rules. The processing time of FELM-RT decreases essentially and it improves the classification accuracy. The high results of F-measure and G- mean, show that FELM-RT classifies the high-dimensional datasets without over-fitting. The comparison between FELM-RT and some state-of-the-art classifiers reveals that FELM-RT overcomes them specially on the datasets with more than 3 million features.
Keywords: Neural tree | Rule-base transferring | Feature clustering | Extreme learning machine | Communication models
مقاله انگلیسی
6 Unsupervised classification of multi-omics data during cardiac remodeling using deep learning
طبقه بندی بدون نظارت شده داده های چند omics در طی بازسازی قلب با استفاده از یادگیری عمیق-2019
Integration of multi-omics in cardiovascular diseases (CVDs) presents high potentials for translational discoveries. By analyzing abundance levels of heterogeneous molecules over time, we may uncover biological interactions and networks that were previously unidentifiable. However, to effectively perform integrative analysis of temporal multi-omics, computational methods must account for the heterogeneity and complexity in the data. To this end, we performed unsupervised classification of proteins and metabolites in mice during cardiac remodeling using two innovative deep learning (DL) approaches. First, long short-term memory (LSTM)- based variational autoencoder (LSTM-VAE) was trained on time-series numeric data. The low-dimensional embeddings extracted from LSTM-VAE were then used for clustering. Second, deep convolutional embedded clustering (DCEC) was applied on images of temporal trends. Instead of a two-step procedure, DCEC performes a joint optimization for image reconstruction and cluster assignment. Additionally, we performed K-means clustering, partitioning around medoids (PAM), and hierarchical clustering. Pathway enrichment analysis using the Reactome knowledgebase demonstrated that DL methods yielded higher numbers of significant biological pathways than conventional clustering algorithms. In particular, DCEC resulted in the highest number of enriched pathways, suggesting the strength of its unified framework based on visual similarities. Overall, unsupervised DL is shown to be a promising analytical approach for integrative analysis of temporal multi-omics.
Keywords: Cardiovascular | Clustering | Multi-omics Time-series | Unsupervised deep learning | Integrative analysis
مقاله انگلیسی
7 A systematic survey of computer-aided diagnosis in medicine: Past and present developments
مرور سیستماتیک تشخیص کمک به رایانه در پزشکی: تحولات گذشته و حال-2019
Computer-aided diagnosis (CAD) in medicine is the result of a large amount of effort expended in the interface of medicine and computer science. As some CAD systems in medicine try to emulate the diag- nostic decision-making process of medical experts, they can be considered as expert systems in medicine. Furthermore, CAD systems in medicine may process clinical data that can be complex and/or massive in size. They do so in order to infer new knowledge from data and use that knowledge to improve their diagnostic performance over time. Therefore, such systems can also be viewed as intelligent systems be- cause they use a feedback mechanism to improve their performance over time. The main aim of the literature survey described in this paper is to provide a comprehensive overview of past and current CAD developments. This survey/review can be of significant value to researchers and professionals in medicine and computer science. There are already some reviews about specific aspects of CAD in medicine. How- ever, this paper focuses on the entire spectrum of the capabilities of CAD systems in medicine. It also identifies the key developments that have led to today’s state-of-the-art in this area. It presents an ex- tensive and systematic literature review of CAD in medicine, based on 251 carefully selected publica- tions. While medicine and computer science have advanced dramatically in recent years, each area has also become profoundly more complex. This paper advocates that in order to further develop and im- prove CAD, it is required to have well-coordinated work among researchers and professionals in these two constituent fields. Finally, this survey helps to highlight areas where there are opportunities to make significant new contributions. This may profoundly impact future research in medicine and in select areas of computer science.
Keywords: Computer-aided diagnosis | Computer-aided detection | Expert and intelligent systems | Computerized signal analysis | Segmentation | Classification
مقاله انگلیسی
8 A multi-dimensional machine learning approach to predict advanced malware
یک روش یادگیری ماشین چند بعدی برای پیش بینی بدافزار پیشرفته-2019
The growth of cyber-attacks that are carried out with malware have become more sophisticated on al- most all networks. Furthermore, attacks with advanced malware have the greatest complexity which makes them very hard to detect. Advanced malware is able to obfuscate much of their traces through many mechanisms, such as metamorphic engines. Therefore, predictions and detections of such malware have become significant challenge for malware analyses mechanisms. In this paper, we propose a multi- dimensional machine learning approach to predict Stuxnet like malware from a dataset that consists of malware samples by using five distinguishing features of advanced malware. We define the features by analyzing advanced malware samples in the wild. Our approach uses regression models to predict ad- vanced malware. We create a malware dataset from existing datasets that contain real samples for ex- perimental purposes. Analyses results show that there are high correlations among some features of ad- vanced malware. These provide better predictions scores, such as R 2 = 0 . 8203 score for Stuxnet closeness feature. Experimental analyses show that our approach is able to predict Stuxnet like advanced malware if prediction features defined.
Keywords: Advanced malware | Machine learning | API Call | Prediction | Classification
مقاله انگلیسی
9 Road surface condition classification using deep learning
طبقه بندی وضعیت سطح جاده با استفاده از یادگیری عمیق-2019
Traditional image recognition technology currently cannot achieve the fast real-time high-accuracy performance necessary for road recognition in intelligent driving. Deep learning models have been recently emerging as promising tools to achieve this performance. The recognition performance of such models can be boosted using appropriate selection of the activation functions. This paper proposes a deep learning approach for the classification of road surface conditions, and constructs a new activation function based on the rectified linear unit Rectified Linear Units (ReLu) activation function. The experimental results show a classification accuracy of 94.89% on the road state database. Experiments on public datasets demonstrate that the proposed convolutional neural network model with the improved activation function has better generalization and excellent classification performance.
Keywords: Deep learning | Road condition | Activation function | Image recognition | Intelligent driving
مقاله انگلیسی
10 مشتقات ثابت دو بعدی تفکیک پذیر صریح برای تشخیص جسم
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 19
مشتقات ثابت تصویر به طور گسترده ای در زمینه های تشخیص الگو و دید رایانه مورد استفاده قرار گرفته اند، زیرا آنها قادر به ارائه الگوی ویژگی های مستقل تبدیل هندسی هستند. در حال حاضر، ثابت های تفکیک پذیر و مشتقات آنها به دلیل توانایی در ترکیب ویژگی های اساسی ثابت های متعامد مختلف، بیشتر مورد توجه قرار گرفته است. با این حال، بسیاری از مشتق های ثابت تفکیک پذیر موجود، به طور غیرمستقیم از مشتق های هندسی و بر اساس رابطه چندجمله ای متعامد و هندسی، به دست می آیند. بنابراین، در این مقاله، رویکرد مستقیمی برای ساخت مجموعه ای از مشتق های ثابت تفکیک پذیر گسسته Chebichef-Krawtchouk پیشنهاد شد که در آن به طور همزمان مشتق برای چرخش، مقیاس پذیری و تبدیل انتقال فراهم می شود و مبتنی بر فرم صریح چند جمله ای Tchebichef و Krawtchouk است. در نتیجه، نتایج تجربی و نظری اثربخشی روش پیشنهادی اثبات شد و ارجحیت آنها در طبقه بندی تصویر و شناخت الگو در مقایسه با روش های موجود نشان داده شد.
کليدواژه: مشتقات غیرمستقیم | روش صریح | ثابت تفکیک پذیر | چندجمله ای Krawtchouk | چندجمله ای Tchebichef | تشخیص الگو
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی