دانلود و نمایش مقالات مرتبط با فیلد تصادفی مارکوف::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی
نتیجه جستجو - فیلد تصادفی مارکوف

تعداد مقالات یافته شده: 1
ردیف عنوان نوع
1 شبیه سازی رویداد های نادر برای میدان تصادفی مارکف با استفاده از رشد دانه در کریستال ها
سال انتشار: 2016 - تعداد صفحات فایل pdf انگلیسی: 5 - تعداد صفحات فایل doc فارسی: 15
مدل های تصادفی تصاویر برای برنامه های کاربردی مانند تقسیم بندی (segmentation)، deblurring و بازسازی بسیار مفید هستند. گاهی اوقات مهم است که بتوانیم از یک مدل تصویر تصادفی شبیه سازی یا نمونه برداری انجام دهیم. به عنوان مثال، شبیه سازی می تواند به عنوان یک ابزار بهینه سازی برای جداسازی، deblurring یا بازسازی یک تصویر استفاده شود. همچنین، شبیه سازی تصاویر در درک سیستم کمک میکند (با استفاده از اکتشاف مجازی مدل های سیستم به جای آزمایش های فیزیکی گران و وقت گیر). البته تعداد زیادی روش های مونت کارلو زنجیره مارکوف (MCMC) برای رسم نمونه هایی از مدل تصادفی مارکوف (MRF) وجود دارد. با این حال، این روش تصاویر نمونه ای را نشان می دهد که نمونه های معمول از مدل را نشان می دهند. برای نمونه برداری از تصاویر که با احتمال کمتری ظاهر می شوند، که کم پیش می آید تعداد قابل توجهی از نمونه های مونت کارلو باید با استفاده از MCMC سنتی طراحی شود.
در این مقاله، ما به تئوری انحرافات بزرگ و نمونه برداری اهمیت می دهیم تا روش شبیه سازی رویداد در مواقع خاص را برای MRF ها پیشنهاد دهیم. سپس از علم مواد به منظور اثبات کاربرد روش ما، از یک مساله استفاده می کنیم. به طور خاص، ما به پدیده رشد غیر معمول دانه در مواد پلی کریستالی نگاه می کنیم. با روش پیشنهادی ما، ما به طور مداوم تصاویری را تولید می کنیم که شامل رشد غیر طبیعی دانه هستند، اما این روش برای روش های استاندارد شبیه سازی مونت کارلو چالش بر انگیز است. مهمتر از همه، روش ما می تواند برای شبیه سازی حوادث نادر در یک کلاس گسترده از برنامه های تصویربرداری، یعنی کسانی که از یک مدل MRF استفاده می کنند، استفاده شود.
کلمات کلیدی: نمونه گیری اهمیت | انحرافات بزرگ | فیلد تصادفی مارکوف | توزیع گیبس | رشد غيرطبيعی دانه | مواد پلی کریستالی
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی