دانلود و نمایش مقالات مرتبط با محاسبات ابری::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - محاسبات ابری

تعداد مقالات یافته شده: 316
ردیف عنوان نوع
1 الگوریتم تکاملی چند هدفه مبتنی بر شبکه عصبی برای زمانبندی گردش کار پویا در محاسبات ابری
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 16 - تعداد صفحات فایل doc فارسی: 45
زمانبندی گردشکار یک موضوع پژوهشی است که به طور گسترده در محاسبات ابری مورد مطالعه قرار گرفته است و از منابع ابری برای کارهای گردش کار استفاده می¬شود و برای این منظور اهداف مشخص شده در QoS را لحاظ می¬کند. در این مقاله، مسئله زمانبندی گردش کار پویا را به عنوان یک مسئله بهینه سازی چند هدفه پویا (DMOP) مدل می¬کنیم که در آن منبع پویایی سازی بر اساس خرابی منابع و تعداد اهداف است که ممکن است با گذر زمان تغییر کنند. خطاهای نرم افزاری و یا نقص سخت افزاری ممکن است باعث ایجاد پویایی نوع اول شوند. از سوی دیگر مواجهه با سناریوهای زندگی واقعی در محاسبات ابری ممکن است تعداد اهداف را در طی اجرای گردش کار تغییر دهد. در این مطالعه یک الگوریتم تکاملی چند هدفه پویا مبتنی بر پیش بینی را به نام الگوریتم NN-DNSGA-II ارائه می¬دهیم و برای این منظور شبکه عصبی مصنوعی را با الگوریتم NGSA-II ترکیب می¬کنیم. علاوه بر این پنج الگوریتم پویای مبتنی بر غیرپیش بینی از ادبیات موضوعی برای مسئله زمانبندی گردش کار پویا ارائه می¬شوند. راه¬حل¬های زمانبندی با در نظر گرفتن شش هدف یافت می¬شوند: حداقل سازی هزینه ساخت، انرژی و درجه عدم تعادل و حداکثر سازی قابلیت اطمینان و کاربرد. مطالعات تجربی مبتنی بر کاربردهای دنیای واقعی از سیستم مدیریت گردش کار Pegasus نشان می¬دهد که الگوریتم NN-DNSGA-II ما به طور قابل توجهی از الگوریتم¬های جایگزین خود در بیشتر موارد بهتر کار می¬کند با توجه به معیارهایی که برای DMOP با مورد واقعی پارتو بهینه در نظر گرفته می¬شود از جمله تعداد راه¬حل¬های غیرغالب، فاصله¬گذاری Schott و شاخص Hypervolume.
مقاله ترجمه شده
2 A task scheduling algorithm considering game theory designed for energy management in cloud computing
یک الگوریتم برنامه ریزی کار با توجه به تئوری بازی طراحی شده برای مدیریت انرژی در محاسبات ابری-2020
With the increasing popularity of cloud computing products, task scheduling problem has become a hot research topic in this field. The task scheduling problem of cloud computing system is more complex than the traditional distributed system. Based on the analysis of cloud computing in related literature, we established a simplified model for task scheduling system in cloud computing.Different from the previous research of cloud computing task scheduling algorithm, the simplified model in this paper is based on game theory as a mathematical tool. Based on game theory, the task scheduling algorithm considering the reliability of the balanced task is proposed. Based on the balanced scheduling algorithm, the task scheduling model for computing nodes is proposed. In the cooperative game model, game strategy is used for the task in the calculation of rate allocation strategy on the node. Through analysis of experimental results, it is shown that the proposed algorithm has better optimization effect.
Keywords: Task scheduling | Game theory | Cloud computing | Optimization
مقاله انگلیسی
3 Privacy-preserving clustering for big data in cyber-physical-social systems: Survey and perspectives
خوشه بندی حفظ حریم خصوصی برای داده های بزرگ در سیستم های سایبر-فیزیکی-اجتماعی: بررسی و چشم انداز-2020
Clustering technique plays a critical role in data mining, and has received great success to solve application problems like community analysis, image retrieval, personalized rec- ommendation, activity prediction, etc. This paper first reviews the traditional clustering and the emerging multiple clustering methods, respectively. Although the existing meth- ods have superior performance on some small or certain datasets, they fall short when clustering is performed on CPSS big data because of the high cost of computation and stor- age. With the powerful cloud computing, this challenge can be effectively addressed, but it brings enormous threat to individual or company’s privacy. Currently, privacy preserving data mining has attracted widespread attention in academia. Compared to other reviews, this paper focuses on privacy preserving clustering technique, guiding a detailed overview and discussion. Specifically, we introduce a novel privacy-preserving tensor-based multi- ple clustering, propose a privacy-preserving tensor-based multiple clustering analytic and service framework, and give an illustrated case study on the public transportation dataset. Furthermore, we indicate the remaining challenges of privacy preserving clustering and discuss the future significant research in this area.
Keywords: CPSS | Big data | Cloud computing | Privacy preserving | Clustering
مقاله انگلیسی
4 Towards DNA based data security in the cloud computing environment
به سمت امنیت داده های مبتنی بر DNA در محیط محاسبات ابری-2020
Nowadays, data size is increasing day by day from gigabytes to terabytes or even petabytes, mainly because of the evolution of a large amount of real-time data. Most of the big data is transmitted through the internet and they are stored on the cloud computing environment. As cloud computing provides internet-based services, there are many attackers and malicious users. They always try to access user’s confidential big data without having the access right. Sometimes, they replace the original data by any fake data. Therefore, big data security has become a significant concern recently. Deoxyribonucleic Acid (DNA) computing is an advanced emerged field for improving data security, which is based on the biological concept of DNA. A novel DNA based data encryption scheme has been proposed in this paper for the cloud computing environment. Here, a 1024-bit secret key is generated based on DNA computing, user’s attributes and Media Access Control (MAC) address of the user, and decimal encoding rule, American Standard Code for Information Interchange (ASCII) value, DNA bases and complementary rule are used to generate the secret key that enables the system to protect against many security attacks. Experimental results, as well as theoretical analyses, show the efficiency and effectivity of the proposed scheme over some well-known existing schemes.
Keywords: Cloud computing | DNA computing | Big data security | MAC address | Complementary rule | CloudSim
مقاله انگلیسی
5 Comprehensive Comparison of Cloud-Based NGS Data Analysis and Alignment Tools
مقایسه جامع ابزارهای تحلیل و تراز داده NGS مبتنی بر ابر-2020
Next-Generation Sequencing (NGS) is very helpful for conducting DeoxyriboNucleic Acid (DNA) Sequencing. DNA sequencing is the process for determining the order (sequence) of the main chemical bases in the DNA. Analyzing human DNA sequencing is important for determining the possibility that a person will develop certain diseases, and/or the ability to respond to medication. However, the NGS process is a complicated and resource-hungry technical process. To solve this dilemma, the majority of NGS software systems are deployed as cloud-based services distributed over cloud-based platforms. Cloud-based platforms provide promising solutions for the computationally intensive tasks required by the NGS data analysis. This work provides a comprehensive investigation of cloud-based NGS data analysis and alignment tools, both the commercial and the open-source tools. We also discuss in detail the main features and setup requirements for each tool, and then compare and contrast between them. Moreover, we extensively analyze and classify the studied NGS data analysis and alignment tools to help NGS biomedical researchers and clinicians in finding appropriate tools for their work, while understanding the similarities and the differences between them.
Keywords: Next-Generation Sequencing (NGS) | Sequence Alignment | Cloud Computing | Big Data | Bioinformatics
مقاله انگلیسی
6 Model-based vehicular prognostics framework using Big Data architecture
چارچوب پیش آگهی های وسایل نقلیه مبتنی بر مدل با استفاده از معماری داده های بزرگ-2020
Nowadays, the continuous technological advances allow designing novel Integrated Vehicle Health Man-agement (IVHM) systems to deal with strict safety regulations in the automotive field with the aim atimproving efficiency and reliability of automotive components. However, challenging issue, which arisesin this domain, is handling a huge amount of data that are useful for prognostic. To this aim, in thispaper we propose a cloud-based infrastructure, namely Automotive predicTOr Maintenance In Cloud(ATOMIC), for prognostic analysis that leverages Big Data technologies and mathematical models of bothnominal and faulty behaviour of the automotive components to estimate on-line the End-Of-Life (EOL)and Remaining Useful Life (EUL) indicators for the automotive systems under investigation. A case studybased on the Delphi DFG1596 fuel pump has been presented to evaluate the proposed prognostic method.Finally, we perform a benchmark analysis of the deployment configurations of ATOMIC architecture interms of scalability and cost.
Keywords:Model-based prognostic analysis | Big Data analysis | Cloud computing servicesa
مقاله انگلیسی
7 Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms
نقشه برداری روغن نخل در شبه جزیره مالزی با استفاده از موتور زمین گوگل و الگوریتم های یادگیری ماشین-2020
Oil palm plays a pivotal role in the ecosystem, environment, economy and without proper monitoring, uncontrolled oil palm activities could contribute to deforestation that can cause high negative impacts on the environment and therefore, proper management and monitoring of the oil palm industry are necessary. Mapping the distribution of oil palm is crucial in order to manage and plan the sustainable operations of oil palm plantations. Remote sensing provides a means to detect and map oil palm from space effectively. Recent advances in cloud computing and big data allow rapid mapping to be performed over large a geographical scale. In this study, 30 m Landsat 8 data were processed using a cloud computing platform of Google Earth Engine (GEE) in order to classify oil palm land cover using non-parametric machine learning algorithms such as Support Vector Machine (SVM), Classification and Regression Tree (CART) and Random Forest (RF) for the first time over Peninsular Malaysia. The hyperparameters were tuned, and the overall accuracy produced by the SVM, CART and RF were 93.16%, 80.08% and 86.50% respectively. Overall, the SVM classified the 7 classes (water, built-up, bare soil, forest, oil palm, other vegetation and paddy) the best. However, RF extracted oil palm information better than the SVM. The algorithms were compared and the McNemar’s test showed significant values for comparisons between SVM and CART and RF and CART. On the other hand, the performance of SVM and RF are considered equally effective. Despite the challenges in implementing machine learning optimisation using GEE over a large area, this paper shows the efficiency of GEE as a cloud-based free platform to perform bioresource distributions mapping such as oil palm over a large area in Peninsular Malaysia.
Keywords: cloud computing | image classification | Landsat | machine learning | oil palm
مقاله انگلیسی
8 Heterogeneous edge computing open platforms and tools for internet of things
پلت فرم ها و ابزارهای باز محاسبات لبه ناهمگن برای اینترنت اشیا-2020
With the continuous development of Internet of Things (IoT) and the overwhelming explosion of Big Data, edge computing serves as an efficient computing mode for time stringent data processing, which can bypass the constraints of network bandwidth and delay, and has been one of the foundation of interconnected applications. Although edge computing has gradually become one of bridges between cloud computing centers and mobile terminals, the literature still lacks a thorough review on the recent advances in edge computing platforms. In this paper, we firstly introduce the definition of edge computing and advantages of edge computing platform. And then, we summarize the key technologies of constructing an edge computing platform, and propose a general framework for edge computing platform. The role of distributed storage management systems in building edge computing platform is elaborated in detail. Furthermore, we give some applications to illustrate how to use third-party edge computing platforms to build specific applications. Finally, we briefly outline current open issues of edge computing platform based on our literature survey.
Keywords: Edge computing | Cloud computing | Platform | Internet of Things(ioT) | Architecture | Application
مقاله انگلیسی
9 تعادل بار در محاسبات ابری: یک تصویر بزرگ
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 10 - تعداد صفحات فایل doc فارسی: 27
زمان بندی یا تخصیص درخواست کاربر (وظایف) در محیط ابری یک مساله بهینه سازی NP-hard است. مطابق با زیرساخت ابری و درخواست های کاربران، سیستم ابری همراه با برخی بارها (که ممکن است کم باری یا اضافه بار یا بار متعادل باشد) اختصاص داده می شود. شرایطی همانند کم باری یا اضافه بار سبب خرابی سیستم مرتبط با مصرف توان، زمان اجرا، خرابی ماشین و غیره شود. بنابراین، توازن بار برای غلبه بر تمامی مشکلات اشاره شده فوق مورد نیاز است. این توازن بار کارها (آن ها ممکن است وابسته یا مستقل باشند) بر ماشین های مجازی (VM) جنبه مهمی از زمان بندی کارها در ابرها است. انواع مختلف بارها در شبکه ابری همانند بار حافظه، بار محاسباتی (CPU)، بار شبکه و غیره وجود دارد. توازن بار مکانیزم شناسایی نودهای اضافه بار و کم بار و سپس توزان بار در بین آن ها است. محققان روش های مختلف توازن بار را در محاسبات ابری برای بهینه سازی پارمترهای مختلف عملکرد پیشنهاد داده اند. ما یک طبقه بندی را برای الگوریتم های توزان بار در ابر ارائه کرده ایم. توضیح کوتاهی از پارامترهای عملکرد در ادبیات و اثرات آن ها در این مقاله ارائه شده است. به منظور تحلیل عملکرد الگوریتم های مبتنی بر اکتشاف ، شبیه سازی ها در شبیه ساز CloudSim انجام شده است و نتایج به طور کامل ارائه شده است.
کلید واژه ها: محاسبات ابری | مصرف انرژی | تعادل بار | مجازی سازی | ماشین مجازی | تخصیص وظیفه
مقاله ترجمه شده
10 مروری بر تجمیع دستگاه های مدل سازی اطلاعات ساختمانی (BIM) و اینترنت اشیاء (IoT): وضعیت کنونی و روند آینده
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 13 - تعداد صفحات فایل doc فارسی: 56
تجمیع مدل سازی اطلاعات ساختمانی (BIM) با داده های زمان واقعی(بلادرنگ) دستگاه های اینترنت اشیاء (IoT)، نمونه قوی را برای بهبود ساخت وساز و بهره وری عملیاتی ارائه می دهد. اتصال جریان-های داده های زمان واقعی که بر گرفته از مجموعه هایی از شبکه های حسگرِ اینترنت اشیاء (که این جریان های داده ای، به سرعت در حال گسترش هستند) می باشند، با مدل های باکیفیت BIM، در کاربردهای متعددی قابل استفاده می باشد. با این حال، پژوهش در زمینه ی تجمیع BIM و IOT هنوز در مراحل اولیه ی خود قرار دارد و نیاز است تا وضعیت فعلی تجمیع دستگاه های BIM و IoT درک شود. این مقاله با هدف شناسایی زمینه های کاربردی نوظهور و شناسایی الگوهای طراحی رایج در رویکردی که مخالف با تجمیع دستگاه BIM-IoT می باشد، مرور جامعی در این زمینه انجام می دهد و به بررسی محدودیت های حاضر و پیش بینی مسیرهای تحقیقاتی آینده می پردازد. در این مقاله، در مجموع، 97 مقاله از 14 مجله مربوط به AEC و پایگاه داده های موجود در صنایع دیگر (در دهه گذشته)، مورد بررسی قرار گرفتند. چندین حوزه ی رایج در این زمینه تحت عناوین عملیات ساخت-وساز و نظارت، مدیریت ایمنی و بهداشت، لجستیک و مدیریت ساختمان، و مدیریت تسهیلات شناسایی شدند. نویسندگان، 5 روش تجمیع را همراه با ذکر توضیحات، نمونه ها و بحث های مربوط به آنها به طور خلاصه بیان کرده اند. این روش های تجمیع از ابزارهایی همچون واسط های برنامه نویسی BIM، پایگاه داده های رابطه ای، تبدیل داده های BIM به پایگاه داده های رابطه ای با استفاده از طرح داده های جدید، ایجاد زبان پرس وجوی جدید، فناوری های وب معنایی و رویکردهای ترکیبی، استفاده می کنند. براساس محدودیت های مشاهده شده، با تمرکز بر الگوهای معماری سرویس گرا (SOA) و راهبردهای مبتنی بر وب برای ادغام BIM و IoT، ایجاد استانداردهایی برای تجمیع و مدیریت اطلاعات، حل مسئله همکاری و محاسبات ابری، مسیرهای برجسته ای برای تحقیقات آینده پیشنهاد شده است.
کلمه های کلیدی: مدل سازی اطلاعات ساختمانی (BIM) | دستگاه اینترنت اشیاء (IoT) | حسگرها | ساختمان هوشمند | شهر هوشمند | محیط ساخته شده هوشمند | تجمیع.
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi