ردیف | عنوان | نوع |
---|---|---|
1 |
An edge creation history retrieval based method to predict links in social networks
یک روش مبتنی بر بازیابی تاریخچه ایجاد لبه برای پیش بینی پیوندها در شبکه های اجتماعی-2020 Link prediction is a graph mining task that aims to foretell whether pairs of non-linked nodes will
connect in the future. It has many useful applications in social networks such as friend recommendation,
identification of future collaborations between authors in co-authorship networks, discovery of
hidden groups of terrorists and criminals, among others. In general, the state-of-the-art link prediction
methods consider topological data extracted from the current state (i.e., the most recent and available
snapshot) of a network. They do not take into account information that describes how the network’s
topology was at the moments when the existing edges were created. Hence, those methods take the
chance to disregard information about the circumstances that may have influenced the appearance
of old edges, and that could be useful to predict the creation of new ones. Thus, this study raises
and evaluates the hypothesis that recovering such data may contribute to improving link prediction.
This hypothesis is justified since those data enrich the description of the application’s context with
examples that represent exactly the kind of event to be foreseen: the creation of new connections.
To this end, this paper proposes a new link prediction method that is based on edge creation history
retrieval. Results from experiments with twenty scenarios of four real co-authorship social networks
presented statistical evidence that indicates the effectiveness of the proposed method and confirms
the raised hypothesis. Keywords: Online social networks | Data mining | Graph mining | Link prediction |
مقاله انگلیسی |
2 |
MemoryPath: A Deep Reinforcement Learning Framework for Incorporating Memory Component into Knowledge Graph Reasoning
MemoryPath: یک چارچوب یادگیری تقویتی عمیق برای ترکیب مولفه حافظه در استدلال نمودار دانش-2020 Knowledge Graph (KG) is identified as a major area in artificial intelligence, which is used for many
real-world applications. The task of knowledge graph reasoning has been widely used and proven
to be effective, which aims to find these reasonable paths for various relations to solve the issue of
incompleteness in KGs. However, many previous works on KG reasoning, such as path-based or rein-
forcement learning-based methods, are too reliant on the pre-training, where the paths from the head
entity and the target entity must be given to pre-train the model, which would easily lead the model to
overfit on the given paths seen in the pre-training. To address this issue, we propose a novel reasoning
model named MemoryPath with a deep reinforcement learning framework, which incorporates Long
Short Term Memory(LSTM) and graph attention mechanism to form the memory component. The
well-designed memory component can get rid of the pre-training so that the model doesn’t depend on
the given target entity for training. A tailored mechanism of reinforcement learning is presented in
this proposed deep reinforcement framework to optimize the training procedure, where two metrics,
Mean Selection Rate (MSR) and Mean Alternative Rate (MAR), are defined to quantitatively mea-
sure the complexities of the query relations. Meanwhile, three different training mechanisms, Action
Dropout, Reward Shaping and Force Forward, are proposed to optimize the training process of the
proposed MemoryPath. The proposed MemoryPath is validated on two datasets from FB15K-237
and NELL-995 on different tasks including fact prediction, link prediction and success rate in finding
paths. The experimental results demonstrate that the tailored mechanism of reinforcement learning
make the MemoryPath achieves state-of-the-art performance comparing with the other models. Also,
the qualitative analysis indicates that the MemoryPath can store the learning process and automati-
cally find the promising paths for a reasoning task during the training, and shows the effectiveness of
the memory component. Keywords: Knowledge Graph Reasoning | Memory Component | Deep Reinforcement Learning | Link Prediction | Attentional Path | Force Forward |
مقاله انگلیسی |
3 |
Robust link prediction in criminal networks: A case study of the Sicilian Mafia
پیش بینی پیوند قوی در شبکه های جنایی: مطالعه موردی مافیای سیسیلی-2020 Link prediction exercises may prove particularly challenging with noisy and incomplete networks, such
as criminal networks. Also, the link prediction effectiveness may vary across different relations within a
social group. We address these issues by assessing the performance of different link prediction algorithms
on a mafia organization. The analysis relies on an original dataset manually extracted from the judicial
documents of operation ‘‘Montagna”, conducted by the Italian law enforcement agencies against individuals
affiliated with the Sicilian Mafia. To run our analysis, we extracted two networks: one including
meetings and one recording telephone calls among suspects, respectively. We conducted two experiments
on these networks. First, we applied several link prediction algorithms and observed that link prediction
algorithms leveraging the full graph topology (such as the Katz score) provide very accurate
results even on very sparse networks. Second, we carried out extensive simulations to investigate how
the noisy and incomplete nature of criminal networks may affect the accuracy of link prediction algorithms.
The experimental findings suggest the soundness of link predictions is relatively high provided
that only a limited amount of knowledge about connections is hidden or missing, and the unobserved
edges follow some kind of generative law. The different results on the meeting and telephone call networks
indicate that the specific features of a network should be taken into careful consideration. Keywords: Criminal networks | Social network analysis | Network science | Link prediction in uncertain graphs |
مقاله انگلیسی |
4 |
A balanced modularity maximization link prediction model in social networks
مدل پیش بینی پیوند حداکثر سازگاری مدولار در شبکه های اجتماعی-2017 Link prediction has been becoming an important research topic due to the rapid growth
of social networks. Community-based link prediction methods are proposed to incorporate
community information in order to achieve accurate prediction. However, the performance
of such methods is sensitive to the selection of community detection algorithms, and they
also fail to capture the correlation between link formulation and community evolution.
In this paper we introduce a balanced Modularity-Maximization Link Prediction (MMLP)
model to address this issue. The idea of MMLP is to integrate the formulation of two types
of links into a partitioned network generative model. We proposed a probabilistic algo
rithm to emphasize the role of innerLinks, which correspondingly maximizes the network
modularity. Then, a trade-off technique is designed to maintain the network in a stable
state of equilibrium. We also present an effective feature aggregation method by exploring
two variations of network features. Our proposed method can overcome the limit of sev
eral community-based methods and the extensive experimental results on both synthetic
and real-world benchmark data demonstrate its effectiveness and robustness.
Keywords: Link prediction | Social network | Community detection | Modularity |
مقاله انگلیسی |
5 |
A utility-based link prediction method in social networks
یک روش پیش بینی پیوند مبتنی بر ابزار در شبکه های اجتماعی-2017 Link prediction is a fundamental task in social networks, with the goal of estimating the likelihood of
a link between each node pair. It can be applied in many situations, such as friend discovery on social
media platforms or co-author recommendations in collaboration networks. Compared to the numerous
traditional methods, this paper introduces utility analysis to the link prediction method by considering
that individual preferences are the main reason behind the decision to form links, and meanwhile it also
focuses on the meeting process that is a latent variable during the process of forming links. Accordingly,
the link prediction problem is formulated as a machine learning process with latent variables; therefore,
an Expectation–Maximization (EM, for short) algorithm is adopted and further developed to cope with
the estimation problem. The performance of the present method is tested both on synthetic networks and
on real-world datasets from social media networks and collaboration networks. All of the computational
results illustrate that the proposed method yields more satisfying link prediction results than the selected
benchmarks, and in particular, logistic regression, as a special case of the proposed method, provides the
lower boundary of the likelihood function.
Keywords: Networks | Link prediction | Utility analysis | EM algorithm | Latent variable |
مقاله انگلیسی |
6 |
A scalable method for link prediction in large real world networks
یک روش مقیاس پذیر برای پیش بینی لینک در شبکه های بزرگ دنیای واقعی-2017 Link prediction has become an important task, especially with the rise of large-scale, complex and
dynamic networks. The emerging research area of network dynamics and evolution is directly related to
predicting new interactions between objects, a possibility in the near future. Recent studies show that the
precision of link prediction can be improved to a great extent by including community information in the
prediction methods. As traditional community-based link prediction algorithms can run only on stand
alone computers, they are not well suited for most of the large networks. Graph parallelization can be one
solution to such problems. Bulk Synchronous Parallel (BSP) programming model is a recently emerged
framework for parallelizing graph algorithms. In this paper, we propose a hybrid similarity measure for
link prediction in real world networks. We also propose a scalable method for community structure-based
link prediction on large networks. This method uses a parallel label propagation algorithm for community
detection and a parallel community information-based Adamic–Adar measure for link prediction. We
have developed these algorithms using Bulk Synchronous Parallel programming model and tested them
with large networks of various domains.
Keywords: Parallel computing | Community structure | Link prediction | Bulk synchronous parallel | Social networks |
مقاله انگلیسی |
7 |
روش جدید پیش بینی پیوند سری های زمانی: روش اتوماتای یادگیر
سال انتشار: 2017 - تعداد صفحات فایل pdf انگلیسی: 16 - تعداد صفحات فایل doc فارسی: 27 پیش بینی پیوند یک چالش بزرگ در شبکه های اجتماعی است که از ساختار شبکه ای برای پیش بینی پیوندهای آتی استفاده می کند. روش های رایج پیش بینی پیوند برای پیش بینی پیوندهای مخفی از نمایش گراف ایستا استفاده می کنند که در آن تصویری از شبکه برای یافتن پیوندهای آتی یا مخفی مورد استفاده قرار می گیرد. برای مثال، پیش بینی پیوند مبتنی بر معیار تشابه، روش سنتی رایجی است که معیار تشابه را برای تمامی پیوندهای غیرمتصل محاسبه نموده، پیوندها را براساس معیارهای تشابه آنها مرتب نموده و پیوندهای با امتیاز تشابه بالاتر را به عنوان پیوندهای آتی برچسب گذاری می کند. از آنجاکه فعالیت های افراد در شبکه های اجتماعی، پویا و غیرقطعی است، و ساختار شبکه ها با گذشت زمان تغییر می کند، استفاده از گراف های قطعی برای مدلسازی و تحلیل شبکه ی اجتماعی نمی تواند روش مناسبی باشد. در مسأله ی پیش-بینی پیوند سری های زمانی، احتمال وقوع پیوند سری های زمانی برای پیش بینی پیوندهای آتی مورد استفاده قرار می گیرد. ما در این مقاله یک روش پیش بینی پیوند سری های زمانی مبتنی بر اتوماتای یادگیر را پیشنهاد می کنیم. در الگوریتم پیشنهادی برای هر پیوندی که قرار است پیش بینی شود، یک اتوماسیون یادگیری داریم و هر اتوماسیون یادگیری در تلاش است وجود یا عدم وجود پیوند متناظر را پیش بینی کند. برای پیش بینی احتمال وقوع پیوند در زمان T، یک دنباله ی متشکل از مراحل 1 تا T-1 داریم و اتوماسیون یادگیری این مراحل را می پیماید تا وجود یا عدم وجود پیوند مربوطه را بیاموزد. زمانیکه احتمال وقوع پیوند سری های زمانی را در نظر بگیریم، آزمایشات اولیه ی پیش بینی پیوند با شبکه های ایمیل و نویسندگی مشترک، نتایج رضایت بخشی را فراهم می آورد.
کلیدواژه ها: شبکه ی اجتماعی | پیش بینی پیوند | سری های زمانی | اتوماتای یادگیر |
مقاله ترجمه شده |
8 |
A deep dive into location-based communities in social discovery networks
شیرجه رفتن عمیق به جوامع مبتنی بر مکان در کشف شبکه های اجتماعی-2017 Location-based social discovery networks (LBSD) is an emerging category of location-based social net
works (LBSN) that are specifically designed to enable users to discover and communicate with nearby
people. In this paper, we present the first measurement study of the characteristics and evolution of
location-based communities which are based on a social discovery network and geographic proximity. We
measure and analyse more than 176K location-based communities with over 1.4 million distinct members
of a popular social discovery network and more than 46 million locations. We characterise the evolution
of the communities and study the user behaviour in LBSD by analysing the mobility features of users
belonging to communities in comparison to non-community members. Using observed spatio-temporal
similarity features, we build and evaluate a classifier to predict location-based community membership
solely based on user mobility information.
Keywords: Human mobility | Link prediction | Social discovery networks |
مقاله انگلیسی |