دانلود و نمایش مقالات مرتبط با یادگیری ماشین::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - یادگیری ماشین

تعداد مقالات یافته شده: 128
ردیف عنوان نوع
1 پیش بینی ورود گردشگران از طریق یادگیری ماشین و شاخص جستجوی اینترنتی
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 10 - تعداد صفحات فایل doc فارسی: 38
مطالعات قبلی نشان داده است که داده های آنلاین، مانند پرس وجوهای انجام شده در موتورهای جستجو، یک منبع اطلاعاتی جدید محسوب می شوند که می توانند برای پیش بینی تقاضای گردشگری مورد استفاده قرار گیرند. در این مطالعه، ما چارچوبی را برای این پیش بینی ارائه می دهیم که با استفاده از یادگیری ماشین و شاخص های جستجوی اینترنتی، ورود گردشگران به مکان های محبوب چین را پیش بینی می کند و عملکرد این پیش بینی، را به ترتیب با نتایج جستجوی تولید شده توسط گوگل و بایدو مقایسه می کنیم. این تحقیق، علیت گرانجر و همبستگیِ میانِ شاخص جستجوی اینترنتی و ورود گردشگران به پکن را تایید می کند. نتایج تجربی ما نشان می دهد که عملکردِ پیش-بینیِ مدل های پیشنهادیِ هسته ی ماشین یادگیری افراطی (KELM )، که مجموعه هایی از گردشگران را با شاخص بایدو و شاخص گوگل ادغام می کنند، در مقایسه با مدل های معیار، به میزان قابل توجهی از نظر دقت پیش بینی و قدرت تحلیل ، بهتر بوده اند.
کلمه های کلیدی: پیش بینی تقاضای گردشگری | هسته ی ماشین یادگیری افراطی | جستجوی داده-های پرس وجو | تحلیل داده های بزرگ | شاخص جستجوی ترکیبی.
مقاله ترجمه شده
2 Automatic detection of relationships between banking operations using machine learning
تشخیص خودکار روابط بین عملیات بانکی با استفاده از یادگیری ماشین-2019
Article history:Received 19 July 2018Revised 5 January 2019Accepted 11 February 2019Available online 12 February 2019Keywords: Machine learning Big dataPattern detection Business analytics FinanceIn their daily business, bank branches should register their operations with several sys- tems in order to share information with other branches and to have a central repository of records. In this way, information can be analysed and processed according to different requisites: fraud detection, accounting or legal requirements. Within this context, there is increasing use of big data and artificial intelligence techniques to improve customer ex- perience. Our research focuses on detecting matches between bank operation records by means of applied intelligence techniques in a big data environment and business intelli- gence analytics. The business analytics function allows relationships to be established and comparisons to be made between variables from the bank’s daily business. Finally, the results obtained show that the framework is able to detect relationships between banking operation records, starting from not homogeneous information and taking into account the large volume of data involved in the process.© 2019 Elsevier Inc. All rights reserved.
Keywords: Machine learning | Big data | Pattern detection | Business analytics | Finance
مقاله انگلیسی
3 Anticipating bank distress in the Eurozone: An Extreme Gradient Boosting approach
پیش بینی بحران مالی بانک ها در منطقه یورو: یک رویکرد تقویت گرادیان شدید-2019
The banking sector plays a special role in the economy and has critical functions which are essential for economic stability. Hence, systemic banking crises disrupt financial markets and hinder global economic growth. In this study, Extreme Gradient Boosting, a state of the art machine learning method, is applied to identify a set of key leading indicators that may help predict and prevent bank failure in the Eurozone banking sector. The crosssectional data used in this study consists of 25 annual financial ratio series for commercial banks in the Eurozone. The sample includes Eurozone listed failed and non-failed banks for the period 2006–2016. A number of early warning systems and leading indicator models have been developed to prevent bank failure. Yet the breadth and depth of the recent financial crisis indicates that these methods must improve if they are to serve as a useful tool for regulators and managers of financial institutions. Our goal is to build a classification model to determine which variables should be monitored to anticipate bank financial distress. A set of key variables are identified to anticipate bank defaults. Identifying leading indicators of bank failure is necessary so that regulators and financial institutions management can take preventive and corrective measures before it is too late.
Keywords: Bank failure prediction | Bank failure prevention | Bank financial distress | Machine learning | Extreme Gradient Boosting |XGBoost
مقاله انگلیسی
4 A flow-based approach for Trickbot banking trojan detection
یک رویکرد مبتنی بر جریان برای شناسایی تروجان بانکی Trickbot-2019
Nowadays, online banking is an attractive way of carrying out financial operations such as ecommerce, e-banking, and e-payments without much effort or the need of any physi- cal presence. This increasing popularity in online banking services and payment systems has created motivation for financial attackers to steal customer‘s credentials and money. Banking trojans have been a way of committing attacks on these financial institutions for more than a decade, and they have become one of the primary drivers of botnet traffic. How- ever, the stealthy nature of financial botnets requires new techniques and novel systems for detection and analysis in order to prevent losses and to ultimately take the botnets down. TrickBot, which specifically threatens businesses in the financial sector and their customers, has been behind man-in-the-browser attacks since 2016. Its main goal is to steal online banking information from victims when they visit their banking websites. In this study, we utilize machine learning techniques to detect TrickBot malware infections and to identify TrickBot related traffic flows without having to analyze network packet payloads, the IP addresses, port numbers and protocol information. Since command and control server IPs are updated almost daily, identification of TrickBot related traffic flows without looking at specific IP addresses is significant. We adopt behavior-based classification that uses artifacts created by the malware during the dynamic analysis of TrickBot malware samples. We compare the performance results of four different state-of-the-art machine learning algorithms, Random Forest, Sequential Minimal Optimization, Multilayer Perceptron, and Logistic Model to identify TrickBot related flows and detect a TrickBot infection. Then, we optimize the proposed classifier via exploring the best hyperparameter and feature set selection. Looking at network packet identifiers such as packet length, packet and flag counts, and inter-arrival times, the Random Forest classifier identifies TrickBot related flows with 99.9534% accuracy, 91.7% true positive rate.
Keywords:Trickbot | Banking trojan | Machine learning | Anomaly traffic detection | Dynamic analysis | Random Fores
مقاله انگلیسی
5 Language models and fusion for authorship attribution
مدل های زبان و همجوشی برای انتساب نویسندگی-2019
We deal with the task of authorship attribution, i.e. identifying the author of an unknown document, proposing the use of Part Of Speech (POS) tags as features for language modeling. The experimentation is carried out on corpora untypical for the task, i.e., with documents edited by non-professional writers, such as movie reviews or tweets. The former corpus is homogeneous with respect to the topic making the task more challenging, The latter corpus, puts language models into a framework of a continuously and fast evolving language, unique and noisy writing style, and limited length of social media messages. While we find that language models based on POS tags are competitive in only one of the corpora (movie reviews), they generally provide efficiency benefits and robustness against data sparsity. Furthermore, we experiment with model fusion, where language models based on different modalities are combined. By linearly combining three language models, based on characters, words, and POS trigrams, respectively, we achieve the best generalization accuracy of 96% on movie reviews, while the combination of language models based on characters and POS trigrams provides 54% accuracy on the Twitter corpus. In fusion, POS language models are proven essential effective components.
Keywords: Authorship attribution | Language models | Computational linguistics | Text classification | Machine learning
مقاله انگلیسی
6 Unsupervised by any other name: Hidden layers of knowledge production in artificial intelligence on social media
بدون نظارت با هر نام دیگری: لایه های پنهان تولید دانش در هوش مصنوعی در رسانه های اجتماعی-2019
Artificial Intelligence (AI) in the form of different machine learning models is applied to Big Data as a way to turn data into valuable knowledge. The rhetoric is that ensuing predictions work well—with a high degree of autonomy and automation. We argue that we need to analyze the process of applying machine learning in depth and highlight at what point human knowledge production takes place in seemingly autonomous work. This article reintroduces classification theory as an important framework for understanding such seemingly invisible knowledge production in the machine learning development and design processes. We suggest a framework for studying such classification closely tied to different steps in the work process and exemplify the framework on two experiments with machine learning applied to Facebook data from one of our labs. By doing so we demonstrate ways in which classification and potential discrimination take place in even seemingly unsupervised and autonomous models. Moving away from concepts of non-supervision and autonomy enable us to understand the underlying classificatory dispositifs in the work process and that this form of analysis constitutes a first step towards governance of artificial intelligence.
Keywords: Artificial intelligence | machine learning | classification | social media| Facebook | discrimination | bias
مقاله انگلیسی
7 Utilizing early engagement and machine learning to predict student outcomes
استفاده از تعامل اولیه و یادگیری ماشین برای پیش بینی نتایج دانش آموزان-2019
Finding a solution to the problem of student retention is an often-required task across Higher Education. Most often managers and academics alike rely on intuition and experience to identify the potential risk students and factors. This paper examines the literature surrounding current methods and measures in use in Learning Analytics. We find that while tools are available, they do not focus on earliest possible identification of struggling students. Our work defines a new descriptive statistic for student attendance and applies modern machine learning tools and techniques to create a predictive model. We demonstrate how students can be identified as early as week 3 (of the Fall semester) with approximately 97% accuracy. We, furthermore, situate this result within an appropriate pedagogical context to support its use as part of a more comprehensive student support mechanism.
Keywords: Machine learning | Learning analytics | Student retentionMSC: 68-U35 68-T10 97-B40
مقاله انگلیسی
8 Friction, snake oil, and weird countries: Cybersecurity systems could deepen global inequality through regional blocking
اصطکاک، روغن مار، و کشورهای عجیب و غریب: سیستم های امنیت سایبری می تواند نابرابری جهانی را از طریق مسدود سازی منطقه ای تقویت کند-2019
In this moment of rising nationalism worldwide, governments, civil society groups, transnational companies, and web users all complain of increasing regional fragmentation online. While prior work in this area has primarily focused on issues of government censorship and regulatory compliance, we use an inductive and qualitative approach to examine targeted blocking by corporate entities of entire regions motivated by concerns about fraud, abuse, and theft. Through participant-observation at relevant events and intensive interviews with experts, we document the quest by professionals tasked with preserving online security to use new machine-learning based techniques to develop a ‘‘fairer’’ system to determine patterns of ‘‘good’’ and ‘‘bad’’ usage. However, we argue that without understanding the systematic social and political conditions that produce differential behaviors online, these systems may continue to embed unequal treatments, and troublingly may further disguise such discrimination behind more complex and less transparent automated assessment. In order to support this claim, we analyze how current forms of regional blocking incentivize users in blocked regions to behave in ways that are commonly flagged as problematic by dominant security and identification systems. To realize truly global, non-Eurocentric cybersecurity techniques would mean incorporating the ecosystems of service utilization developed by marginalized users rather than reasserting norms of an imagined (Western) user that casts aberrations as suspect.
Keywords: Regional blocking | machine learning | classification | inequality | discrimination | security
مقاله انگلیسی
9 Predicting failure in the U:S: banking sector: An extreme gradient boosting approach
پیش بینی شکست در بخش بانکی ایالات متحده: رویکرد افزایش شدید شیب-2019
Banks play a central role in developed economies. Consequently, systemic banking crises destabilize financial markets and hamper global economic growth. In this study, extreme gradient boosting was used to predict bank failure in the U.S. banking sector. Key variables were identified to anticipate and prevent bank defaults. The data, which spanned the period 2001 to 2015, consisted of annual series of 30 financial ratios for 156 U.S. national commercial banks. Identifying leading indicators of bank failure is vital to help regulators and bank managers act swiftly before distressed financial institutions reach the point of no return. The findings indicate that lower values for retained earnings to average equity, pretax return on assets, and total risk-based capital ratio are associated with a higher risk of bank failure. In addition, an exceedingly high yield on earning assets increases the chance of bank financial distress.
Keywords: Bank failure prediction | Bank failure prevention | Bank financial distress | Machine learning | Extreme gradient boosting | XGBoost
مقاله انگلیسی
10 تحلیل احساسات مبتنی بر یادگیری عمیق در متن رومی اردو
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 5 - تعداد صفحات فایل doc فارسی: 9
آنالیز احساسات با توجه به رویکرد همه جانبه در آنالیز احساسات کاربران شبکه های اجتماعی مختلف، انجمن ها، سایت های بازاریابی الکترونیکی و وبلاگ ها، اهمیت زیادی دارد. داده های مربوط به احساسات در وب اهمیت زیادی دارد و بر مشتریان، خوانندگان و شرکت های تجاری تأثیر می گذارد. شبکه عصبی مکرر به طور گسترده ای در انجام وظایف پردازش زبان طبیعی مورد استفاده قرار گرفته است، زیرا برای مدل سازی داده های متوالی به صورت موثر طراحی شده است.
در این مقاله از مدل عصبی عمیق حافظه کوتاه-طولانی مدت (LSTM) استفاده شده است. توانایی فوق العاده ای در ضبط اطلاعات دور برد و حل مشکل کاهش گرادیان و همچنین ارائه اطلاعات متنی آتی، معناشناسی توالی لغات با شکوه دارد. این مقاله پایه و اساس تطبیق روش های یادگیری عمیق در آنالیز رومن اردو است. نتایج تجربی نشان داد که مدل ما دقت قابل توجهی دارد و دقت بیشتری از روش های یادگیری ماشین دارد.
کليدواژه: شبکه عصبی مکرر (RNN)| حافظه کوتاه-بلند مدت (LSTM) | آنالیز معنایی رومن اردو | تعبیه لغت
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی