دانلود و نمایش مقالات مرتبط با Decision-making::صفحه 1
تبریک غدیر خم

با سلام خدمت کاربران عزیز، به اطلاع می رساند ترجمه مقالاتی که سال انتشار آن ها زیر 2008 می باشد رایگان بوده و میتوانید با وارد شدن در صفحه جزییات مقاله به رایگان ترجمه را دانلود نمایید.

نتیجه جستجو - Decision-making

تعداد مقالات یافته شده: 337
ردیف عنوان نوع
1 Performance assessment of coupled green-grey-blue systems for Sponge City construction
ارزیابی عملکرد سیستم های سبز و خاکستری-آبی همراه برای ساخت و ساز شهر اسفنجی-2020
In recent years, Sponge City has gained significant interests as a way of urban water management. The kernel of Sponge City is to develop a coupled green-grey-blue system which consists of green infrastructure at the source, grey infrastructure (i.e. drainage system) at the midway and receiving water bodies as the blue part at the terminal. However, the current approaches for assessing the performance of Sponge City construction are confined to green-grey systems and do not adequately reflect the effectiveness in runoff reduction and the impacts on receiving water bodies. This paper proposes an integrated assessment framework of coupled green-grey-blue systems on compliance of water quantity and quality control targets in Sponge City construction. Rainfall runoff and river system models are coupled to provide quantitative simulation evaluations of a number of indicators of landbased and river quality. A multi-criteria decision-making method, i.e., Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is adopted to rank design alternatives and identify the optimal alternative for Sponge City construction. The effectiveness of this framework is demonstrated in a typical plain river network area of Suzhou, China. The results demonstrate that the performance of Sponge City strategies increases with large scale deployment under smaller rainfall events. In addition, though surface runoff has a dilution effect on the river water quality, the control of surface pollutants can play a significant role in the river water quality improvement. This framework can be applied to Sponge City projects to achieve the enhancement of urban water management.
Keywords: Low impact development | Sponge City | Green-grey-blue system | Performance assessment | TOPSIS
مقاله انگلیسی
2 چارچوب حاکمیتی هوش تجاری در دانشگاه: مطالعه موردی دانشگاه دو لا کاستا
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 8 - تعداد صفحات فایل doc فارسی: 25
دانشگاه ها و شرکت ها دارای فرآیندهای تصمیم گیری هستند که به آنها اجازه می دهد تا به اهداف سازمانی دست پیدا کنند. در حال حاضر، تحلیل داده ها نقش مهمی در ایجاد دانش، بدست آوردن الگوهای مهم و پیش بینی استراتژی ها ایفا می کنند.این مقاله طراحی چارچوب نظارت هوش تجاری را برای دانشگاه دو لا کاستا ارائه کرده است که به آسانی برای سازمان های دیگر هم قابل استفاده است. برای این منظور، تشخیص انجام شده به منظور شناسایی میزان بلوغ تحلیلی انجام شده است. با استفاده از این چشم انداز، مدلی برای تقویت فرهنگ سازمانی ، زیر ساختارها، مدیریت داده، تحلیل داده و نظارت ارائه شده است.این مدل در بر گیرنده تعریف چارچوب نظارتی، اصول هدایت کننده، استراتژی ها، نهادهای تصمیم گیرنده و نقش ها می باشد. بنابراین، این چارچوب برای استفاده از کنترل های موثر جهت اطمینان از موفقیت پروژه های هوش تجاری و دست یابی به اهداف برنامه توسعه همراه با چسم انداز تحلیلی سازمان ارائه شده است.
کلمات کلیدی: هوش تجاری | نظارت | دانشگاه | تحلیل | تصمیم گیری
مقاله ترجمه شده
3 Establishment and application of intelligent city building information model based on BP neural network model
ایجاد و کاربرد مدل اطلاعات هوشمند شهرسازی براساس مدل شبکه عصبی BP-2020
The construction of smart cities in our country has received extensive attention. Under the situation that smart cities are vigorously promoted nowadays, compared with traditional construction and operation and maintenance methods, building information model (BIM) technology is more suitable to serve as an important foundation for intelligent management in the whole process of construction projects. BIM is an abbreviation for building information model. BIM relies on a variety of digital technologies, which can be used to realize information modeling of urban buildings and infrastructure. The efficiency of information exchange in the process of intelligence construction ensures the integrity and accuracy of information data exchange and maintains the consistency of information data exchange. Data and information have objectivity, applicability, transferability, and sharing. Geographic data is a digital representation of various geographical features and phenomena and their relationships. BIM is a digital representation of physical and functional characteristics of a facility. It can It is used as a shared knowledge resource for facility information. It becomes a reliable basis for facility life-cycle decision-making. Input BP neural network, and then learn and train by BP neural network.
Keywords: BP neural network | Smart city | Building information model
مقاله انگلیسی
4 Customer-centric prioritization of process improvement projects
اولویت بندی مشتری محور پروژه های بهبود فرآیند-2020
Today, customers can conveniently compare products and decide how to interact with companies. With customer centricity becoming an important success factor, companies must drive customer satisfaction not only through excellent products but also through customer-centric processes. As many companies face an abundance of action possibilities, fast-changing customer needs, and scarce resources, guidance regarding the customercentric prioritization of process improvement projects is in high need. As existing approaches predominantly focus on process efficiency, we propose a decision model that accounts for the effects of process improvement on customer centricity in line with justificatory knowledge on value-based process decision-making, project portfolio selection, and the measurement of customer satisfaction. When building the decision model, we adopted the design science paradigm and used multi-criteria decision analysis as well as normative analytical modeling as research methods. We evaluated the model by discussing it with practitioners, by building a software prototype, and by applying it at a German insurance company. Overall, our research extends the prescriptive knowledge on process prioritization and customer process management.
Keywords: Business process management | Business process improvement | Process decision-making | Customer centricity | Project portfolio selection | Kano model
مقاله انگلیسی
5 Exploring the emergence of lock-in in large-scale projects: A process view
کاوش در ظهور قفل شدن در پروژه های مقیاس بزرگ: نمای فرآیند-2020
The purpose of this paper is to investigate the emergence of lock-in in large-scale projects. Although large-scale projects have been studied for decades, most studies have applied economic or psychological perspectives to emphasize decision-making processes at the project front-end. Of those studies, some have focused on poor decision-making due to lock-in and the escalating commitments of decision-makers to ineffective courses of action. However, little is known about the way that project decisions are affected by organizational and interorganizational contexts and the actors involved. Understanding decisions from a process viewpoint with a long-term (inter-) organizational perspective will lead to a better understanding of lock-in and the overall performance of large-scale projects. This qualitative research is based on a case study. The research setting is the multi-actor Madrid–Barcelona High-Speed rail Line (HSL) project in Spain. Through observations, interviews, several project documents, and report analysis, we explore the processual nature of the choices made during the course of the project. We consider the contextual conditions that give rise or support the emergence of lock-in in relation to pre- and post-project effects, institutional influences, and management practices that create action spaces at the project level. Our findings suggest that lock-in emergence requires the recognition of the long-term (inter-) organizational perspective regarding mechanisms and effects rather than confining decisions to the individual or single actor control in the front-end of projects. Based on organizational theory, the main contribution of this paper is to enrich our understanding of the emergence of lock-in using process theories.
Keywords: Lock-in | Path dependence and creation | The decision-making process | Large-scale projects | Temporary inter-organizational setting | Process theory
مقاله انگلیسی
6 Intelligent decision-making of online shopping behavior based on internet of things
تصمیم گیری هوشمندانه از رفتار خرید آنلاین مبتنی بر اینترنت اشیا-2020
The development of big data and Internet of things (IoT) have brought big changes to e-commerce. Different kinds of information sources have improved the consumers’ online shopping performance and make it possible to realize the business intelligence. Grip force and eye-tracking sensors are applied to consumers online reviews search behavior by relating them to the research approaches in IoT. To begin with, public cognition of human contact degrees of recycled water reuses with grip force test was measured. According to the human contact degrees, 9 recycled water reuses presented by the experiment are classified into 4 categories. Based on the conclusion drawn from grip force test, purified recycled water and fresh vegetable irrigated with recycled water are regarded as the drinking for high-level human contact degree and the irrigation of food crops for low-level human contact degree respectively. Several pictures are designed for eye-tracking test by simulating an on-line shopping web page on Taobao (the most popular online shopping platform in China). By comparing the fixation time participants spent on the areas of interest (AOIs), we justify that consumers online reviews search behavior is substantially affected by human contact degrees of recycled products. It was found that consumers rely on safety perception reviews when buying high contact goods.
Keywords: Online reviews search behavior | Recycled products | Grip force sensor | Eye-tracking sensor | Internet of Things (IoT)
مقاله انگلیسی
7 Big data analytics in health sector: Theoretical framework, techniques and prospects
تجزیه و تحلیل داده های بزرگ در بخش بهداشت و درمان: چارچوب نظری ، تکنیک ها و چشم انداز-2020
Clinicians, healthcare providers-suppliers, policy makers and patients are experiencing exciting opportunities in light of new information deriving from the analysis of big data sets, a capability that has emerged in the last decades. Due to the rapid increase of publications in the healthcare industry, we have conducted a structured review regarding healthcare big data analytics. With reference to the resource-based view theory we focus on how big data resources are utilised to create organization values/capabilities, and through content analysis of the selected publications we discuss: the classification of big data types related to healthcare, the associate analysis techniques, the created value for stakeholders, the platforms and tools for handling big health data and future aspects in the field. We present a number of pragmatic examples to show how the advances in healthcare were made possible. We believe that the findings of this review are stimulating and provide valuable information to practitioners, policy makers and researchers while presenting them with certain paths for future research.
Keywords: Big data analytics | Health-Medicine | Decision-making | Machine learning | Operations research (OR) techniques
مقاله انگلیسی
8 Nudging and citizen science: The effectiveness of feedback in energy-demand management
برهنگی و علم شهروندی: اثربخشی بازخورد در مدیریت تقاضای انرژی-2020
Nudging is a framework for directing individuals toward better behavior, both for personal and societal benefits, through heuristics that drive the decision-making process but without preventing any available choice. Considering the Grand Challenges that our society faces today, nudging represents an effective framework to tackle some of these pressing issues. In this work, we assessed the effectiveness of informational nudges in the form of detailed, customized feedback, within an energy-demand-management project. The project aligns energy production and demand, thereby reducing greenhouse gases and pollutant emissions to mitigate climate change. We also offered evidence that this kind of feedback is efficacious in involving individuals as citizen scientists, who volunteer their efforts toward the success of the environmentally-related aim of the project. The results of this research – based on surveys, electroencephalography measurements and online participation measures – indicate that feedback can be an effective tool to steer participants’ behavior under the libertarian paternalistic view of nudging, increase their motivation to contribute to citizen science, and improve their awareness about environmentally-related issues. In so doing, we provide evidence that nudging and citizen science can be jointly adopted toward the mitigation of pressing environmental issues.
Keywords: Nudging | Citizen science | Crowd | Energy-demand management | Grand challenges | Electroencephalography
مقاله انگلیسی
9 Towards a real-time processing framework based on improved distributed recurrent neural network variants with fastText for social big data analytics
به سمت یک چارچوب پردازش در زمان واقعی بر اساس بهبود انواع شبکه عصبی مکرر توزیع شده با fastText برای تجزیه و تحلیل داده های بزرگ اجتماعی-2020
Big data generated by social media stands for a valuable source of information, which offers an excellent opportunity to mine valuable insights. Particularly, User-generated contents such as reviews, recommendations, and users’ behavior data are useful for supporting several marketing activities of many companies. Knowing what users are saying about the products they bought or the services they used through reviews in social media represents a key factor for making decisions. Sentiment analysis is one of the fundamental tasks in Natural Language Processing. Although deep learning for sentiment analysis has achieved great success and allowed several firms to analyze and extract relevant information from their textual data, but as the volume of data grows, a model that runs in a traditional environment cannot be effective, which implies the importance of efficient distributed deep learning models for social Big Data analytics. Besides, it is known that social media analysis is a complex process, which involves a set of complex tasks. Therefore, it is important to address the challenges and issues of social big data analytics and enhance the performance of deep learning techniques in terms of classification accuracy to obtain better decisions. In this paper, we propose an approach for sentiment analysis, which is devoted to adopting fastText with Recurrent neural network variants to represent textual data efficiently. Then, it employs the new representations to perform the classification task. Its main objective is to enhance the performance of well-known Recurrent Neural Network (RNN) variants in terms of classification accuracy and handle large scale data. In addition, we propose a distributed intelligent system for real-time social big data analytics. It is designed to ingest, store, process, index, and visualize the huge amount of information in real-time. The proposed system adopts distributed machine learning with our proposed method for enhancing decision-making processes. Extensive experiments conducted on two benchmark data sets demonstrate that our proposal for sentiment analysis outperforms well-known distributed recurrent neural network variants (i.e., Long Short-Term Memory (LSTM), Bidirectional Long Short-Term Memory (BiLSTM), and Gated Recurrent Unit (GRU)). Specifically, we tested the efficiency of our approach using the three different deep learning models. The results show that our proposed approach is able to enhance the performance of the three models. The current work can provide several benefits for researchers and practitioners who want to collect, handle, analyze and visualize several sources of information in real-time. Also, it can contribute to a better understanding of public opinion and user behaviors using our proposed system with the improved variants of the most powerful distributed deep learning and machine learning algorithms. Furthermore, it is able to increase the classification accuracy of several existing works based on RNN models for sentiment analysis.
Keywords: Big data | FastText | Recurrent neural networks | LSTM | BiLSTM | GRU | Natural language processing | Sentiment analysis | Social big data analytics
مقاله انگلیسی
10 Z-number based earned value management (ZEVM): A novel pragmatic contribution towards a possibilistic cost-duration assessment
مدیریت ارزش به دست آمده مبتنی بر عدد Z (ZEVM): سهم عملگرا جدید نسبت به ارزیابی هزینه تمام شده احتمالی-2020
The Earned value management (EVM) is one of the simplified analytical cost-duration assessment tools which assist project managers in monitoring the status of the project undertaken. The EVM has been elaborated by both deterministic and uncertain numbers such as fuzzy logic in the light of time. Even though cost-duration analysis is so sensitive and fluctuating in projects, the adopted approaches were unable to consider the conspicuous unreliability which is always involving the decision-making data. This problem impedes project managers to trust the foreseen inferences. To help in overcoming this critical deficiency, Z-numbers were proposed to take possibilities and reliabilities into account. Applying Z-numbers and possibilistic modeling in the EVM is a challenging topic which causes the accuracy of cost-duration tracing results to be significantly enhanced. This paper presents the application of z-numbers for modeling the earned value indicators and proves the superiority of the ZEVM against traditional fuzzy EVM. This work originally adds to the state-of-the-art literature on earned value management by presenting a proposal and applications of a new as Z-Earned Value Management (ZEVM). An illustrative case is resolved to magnify the capability of the proposed framework in dealing with higher levels of uncertainty associated with decision-making data.
Keywords: Earned value management | Fuzzy sets | Project evaluation | Uncertainty | Z-number
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi