دانلود و نمایش مقالات مرتبط با Deep Q- learning::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - Deep Q- learning

تعداد مقالات یافته شده: 2
ردیف عنوان نوع
1 Designing online network intrusion detection using deep auto-encoder Q-learning
طراحی تشخیص نفوذ آنلاین به شبکه با استفاده از یادگیری-Q خودرمزگذار عمیق-2019
Because of the increasing application of reinforcement learning (RL), particularly deep Q- learning algorithm, research organizations utilize it with increasing frequency. The predic- tion of cyber vulnerability and development of efficient real-time online network intrusion detection (NID) systems are progressions toward becoming RL-powered. An open issues in NID is the model design and prediction of real-time online data composed of a series of time-related feature patterns. There have been concerns regarding the operation of the developed systems because cyber-attack scenarios vary continuously to circumvent NID. These issues have been related to the human interaction significance and the decrease in accuracy verification. Therefore, we employ an RL that permits a deep auto-encoder in the Q-network (DAEQ-N). The proposed DAEQ-N attempts to achieve the maximum prediction accuracy in online learning systems into which continuous behavior patterns are fed and which are trained with more significant weights by classifying it as either “normal”or “anomalous.”
Keywords: Network anomalies | Online learning systems | Network intrusion detection (NID) | Deep Q-Network (DQN) | Reinforcement learning (RL)
مقاله انگلیسی
2 تخلیه محاسباتی خودکار در لبه متحرک برای برنامه های اینترنت اشیاء
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 22
تخلیه محاسباتی یک توضیح برجسته برای دستگاههای سیار محدود به منابع است که انجام این فرایند مستلزم توانایی محاسباتی بالایی است. وجود ابر متحرک در پلتفرم تخلیه کاملاً شناخته شده است و بطور معمول در راه حلهای شبکه‌ای بسیار دور برای استفاده در محاسبه دستگاههای سیار محدود به منابع بکار می‌رود. به خاطر راه حل شبکه‌ای بسیار دور، دستگاه‌های کاربر، تأخیر شبکه‌ای بالایی را تجربه می‌کنند که بر برنامه‌های اینترنت اشیاء (IOT) متحرک در زمان واقعی، تأثیر منفی دارد. بنابراین، این مقاله یک راه حل شبکه‌ای بسیار نزدیک را برای تخلیه محاسباتی در مه/لبه متحرک پیشنهاد می‌دهد. تحرک، تنوع و توزیع جغرافیایی دستگاههای همراه از طریق چالشهای متعددی در تخلیه محاسباتی در مه/لبه متحرک. با این حال، برای پاسخگویی به تقاضای منابع محاسباتی در دستگاههای همراه بزرگ، یک چارچوب مدیریت خودکار مبتنی بر یادگیری عمیق Q مطرح می‌شود. کنترلگر لبه توزیع شده/ شبکه مه (FOC) که منابع مه/ لبه موجود برای مثال پردازش، حافظه، شبکه را پاکسازی می‌کند، سرویس محاسباتی مه/لبه را فعال می‌نماید. تصادفی بودن دسترس پذیری منابع و گزینه‌های بی شمار برای اختصاص آن منابع به محاسبه تخلیه، با مسئله مناسب برای مدلسازی از طریق روند تصمیم گیری Markov (MDF) و راه حل از طریق یادگیری تقویتی متناسب است. مدل پیشنهادی با توجه به نیازهای متغیر منابع و تحرک دستگاههای کاربر نهایی شبیه سازی شده است. روش پیشنهادی یادگیری عمیقQ، به طور قابل توجهی عملکرد تخلیه محاسباتی را از طریق به حداقل رساندن تأخیر در محاسبات سرویس، بهبود می‌بخشد. همچنین،کل نیرو با توجه تصمیم گیریهای مختلف تخلیه به منظور بررسیهای مقایسه‌ای مورد مطالعه قرار گرفته است که این رویکرد پیشنهادی را با توجه به راه حل‌های تخلیه محاسباتی پیشرفته، به عنوان یک رویکرد دارای مصرف بهینه انرژی نشان می‌دهد.
واژگان کلیدی: تخلیه محاسباتی | محاسبه خودکار | محاسبه مه/لبه متحرک | یادگیری عمیق Q
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi