دانلود و نمایش مقالات مرتبط با Defects detection::صفحه 1
تبریک 1399
نتیجه جستجو - Defects detection

تعداد مقالات یافته شده: 2
ردیف عنوان نوع
1 Temporal and spatial deep learning network for infrared thermal defect detection
شبکه یادگیری عمیق زمانی و مکانی برای تشخیص نقص حرارتی مادون قرمز-2019
Most common types of defects for composite are debond and delamination. It is difficult to detect the inner defects on a complex shaped specimen by using conventional optical thermography nondestructive testing (NDT) methods. In this paper, a hybrid of spatial and temporal deep learning architecture for automatic thermography defects detection is proposed. The integration of cross network learning strategy has the capability to significantly minimize the uneven illumination and enhance the detection rate. The probability of detection (POD) has been derived to measure the detection results and this is coupled with comparison studies to verify the efficacy of the proposed method. The results show that visual geometry group-Unet (VGG-Unet) cross learning structure can significantly improve the contrast between the defective and non-defective regions. In addition, investigation of different feature extraction methods in which embedded in deep learning is conducted to optimize the learning structure. To investigate the efficacy and robustness of the proposed method, experimental studies have been carried out for inner debond defects on both regular and irregular shaped carbon fiber reinforced polymer (CFRP) specimens.
Keywords: Deep learning | Segmentation | Thermography defect detection | Nondestructive testing
مقاله انگلیسی
2 Weld image deep learning-based on-line defects detection using convolutional neural networks for Al alloy in robotic arc welding
تشخیص نقص تصویر جوش تشخیص عمیق مبتنی بر یادگیری عمیق برخط با استفاده از شبکه های عصبی همگرا برای آلیاژ آل در جوش قوس رباتیک-2019
Accurate on-line weld defects detection is still challenging for robotic welding manufacturing due to the complexity of weld defects. This paper studied deep learning–based on-line defects detection for aluminum alloy in robotic arc welding using Convolutional Neural Networks (CNN) and weld images. Firstly, an image acquisition system was developed to simultaneously collect weld images, which can provide more information of the real-time weld images from different angles including top front, top back and back seam. Then, a new CNN classification model with 11 layers based on weld image was designed to identify weld penetration defects. In order to improve the robustness and generalization ability of the CNN model, weld images from different welding current and feeding speed were captured for the CNN model. Based on the actual industry challenges such as the instability of welding arc, the complexity of the welding environment and the random changing of plate gap condition, two kinds of data augmentation including noise adding and image rotation were used to boost the CNN dataset while parameters optimization was carried out. Finally, non-zero pixel method was proposed to quantitatively evaluate and visualize the deep learning features. Furthermore, their physical meaning were clearly explained. Instead of decreasing the interference from arc light as in traditional way, the CNN model has taken full use of those arc lights by combining them in a various way to form the complementary features. Test results shows that the CNN model has better performance than our previous work with the mean classification accuracy of 99.38%. This paper can provide some guidance for on-line detection of manufacturing quality in metal additive manufacturing (AM) and laser welding.
Keywords: Deep learning | Defects detection | Al alloy | Robotic arc welding | Convolutional neural networks | Weld images | Feature visualization
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi