دانلود و نمایش مقالات مرتبط با Earthworm Optimization algorithm::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی 2
نتیجه جستجو - Earthworm Optimization algorithm

تعداد مقالات یافته شده: 1
ردیف عنوان نوع
1 Deep belief network-based hybrid model for multimodal biometric system for futuristic security applications
مدل ترکیبی مبتنی بر باور عمیق برای سیستم بیومتریک چند حالته برای برنامه های امنیتی آینده-2021
Biometrics is the technology to identify humans uniquely based on face, iris, and fingerprints, etc. Biometric authentication allows the person recognition automatically on the basis of behavioral or physiological charac- teristics. Biometrics are broadly employed in several commercial as well as the official identification systems for automatic access control. This paper introduces the model for multimodal biometric recognition based on score level fusion method. The overall procedure of the proposed method involves five steps, such as pre-processing, feature extraction, recognition score using Multi- support vector neural network (Multi-SVNN) for all traits, score level fusion, and recognition using deep belief neural network (DBN). The first step is to input the training images into pre-processing steps. Thus, the pre-processing of three traits, like iris, ear, and finger vein is done. Then, the feature extraction is done for each modality to extract the features. After that, the texture features are extracted from pre-processed images of the ear, iris, and finger vein, and the BiComp features are acquired from individual images using a BiComp mask. Then, the recognition score is computed based on the Multi-SVNN classifier to provide the score individually for all three traits, and the three scores are provided to the DBN. The DBN is trained using the chicken earthworm optimization algorithm (CEWA). The CEWA is the integration of the chicken swarm optimization (CSO), and earthworm optimization algorithm (EWA) for the optimal authentication of the person. The analysis proves that the developed method acquired a maximal accuracy of 95.36%, maximal sensitivity of 95.85%, and specificity of 98.79%, respectively.
Keywords: Multi-modal Bio-metric system | Chicken Swarm Optimization | Earthworm Optimization algorithm | Deep Belief Network | Multi-SVNN
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi