دانلود و نمایش مقالات مرتبط با Framework::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - Framework

تعداد مقالات یافته شده: 1935
ردیف عنوان نوع
1 DEGAN : شبکه های مولد متخاصم غیر متمرکز
سال انتشار: 2021 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 23
در این مطالعه، یک چارچوب توزیع شده و غیرمتمرکز از شبکه های مولد متخاصم (GAN) بدون تبادل داده های آموزشی پیشنهاد شد. هر گره شامل مجموعه ی از داده محلی ، یک تفکیک کننده کننده و یک مولد است که فقط گرادیان ژنراتور آن با سایر گره ها به اشتراک گذاشته می شوند. در این مقاله ، تکنیک توزیع جدید معرفی می شود که در آن کارکنان مستقیماً با یکدیگر ارتباط برقرار می کنند و هیچ گره مرکزی وجود ندارد. نتایج تجربی ما در مجموعه داده های معیار ، عملکرد و دقت تقریباً یکسانی را در مقایسه با چارچوب های GAN متمرکز موجود نشان می دهد. چارچوب پیشنهادی به عدم یادگیری غیرمتمرکز برای GAN ها می پردازد.
کلمات کلیدی: یادگیری عمیق | شبکه های مولد متخاصم | یادگیری ماشین توزیع شده | معماری غیرمتمرکز
مقاله ترجمه شده
2 افزایش هوشمندی به منظور بهره وری ، زیست پذیری و پایداری
سال انتشار: 2021 - تعداد صفحات فایل pdf انگلیسی: 8 - تعداد صفحات فایل doc فارسی: 11
این کتاب به دنبال توسعه چارچوبی برای بررسی تجربیات شهرهای هوشمند در حوزه های قضایی مختلف در سراسر آسیا اقیانوسیه ، قاره آمریکا ، اروپا و انگلستان ، خاورمیانه و آفریقا است. این چارچوب ، که در فصل 2 شرح داده شده ، برای درک محرک ها ، هنرمندان و نتایج سیاست ها و همچنین سیستم عامل های فناوری است که پایه و اساس نوآوری هایی است که باعث افزایش بهره وری ، پایداری و زیست پذیری شده اند. در حالی که مقیاس ابتکارات شهرهای هوشمند در زمینه های مختلف جغرافیایی متفاوت است ، این مسئله که چگونه مردم به سوی نوآوری روی بیاورند و چگونه آن را در کل شهر قابل استفاده کرد؛ اهمیت به سزایی دارد. این کتاب عوامل اصلی عملکردهای فعلی شهرهای هوشمند را در چندین مکان مشخص بیان می کند. همچنین به شرح عوامل اصلی و نقش های آنها - دولت ها ، صنایع خصوصی ، شرکت های فناوری اطلاعات و ارتباطات (ICT) ، شهروندان و کاربران نهایی در هر زمینه می پردازد. شناسایی محرکها ، هنرمندان و نتایج کلیدی به صورت سازمان یافته، بینش مهمی در سایر حوزه های قضایی در مورد چگونگی بازنگری یا تدوین بهتر سیاستها و برنامه¬های فعلی و آینده¬ی جنبش¬های نوآوری در زمینه فناوری و اجتماعی فراهم می کند.
مقاله ترجمه شده
3 Optimal carbon storage reservoir management through deep reinforcement learning
مدیریت بهینه ذخیره مخزن کربن از طریق یادگیری تقویتی عمیق-2020
Model-based optimization plays a central role in energy system design and management. The complexity and high-dimensionality of many process-level models, especially those used for geosystem energy exploration and utilization, often lead to formidable computational costs when the dimension of decision space is also large. This work adopts elements of recently advanced deep learning techniques to solve a sequential decisionmaking problem in applied geosystem management. Specifically, a deep reinforcement learning framework was formed for optimal multiperiod planning, in which a deep Q-learning network (DQN) agent was trained to maximize rewards by learning from high-dimensional inputs and from exploitation of its past experiences. To expedite computation, deep multitask learning was used to approximate high-dimensional, multistate transition functions. Both DQN and deep multitask learning are pattern based. As a demonstration, the framework was applied to optimal carbon sequestration reservoir planning using two different types of management strategies: monitoring only and brine extraction. Both strategies are designed to mitigate potential risks due to pressure buildup. Results show that the DQN agent can identify the optimal policies to maximize the reward for given risk and cost constraints. Experiments also show that knowledge the agent gained from interacting with one environment is largely preserved when deploying the same agent in other similar environments.
Keywords: Reinforcement learning | Multistage decision-making | Deep autoregressive model | Deep Q network | Surrogate modeling | Markov decision process | Geological carbon sequestration
مقاله انگلیسی
4 Performance assessment of coupled green-grey-blue systems for Sponge City construction
ارزیابی عملکرد سیستم های سبز و خاکستری-آبی همراه برای ساخت و ساز شهر اسفنجی-2020
In recent years, Sponge City has gained significant interests as a way of urban water management. The kernel of Sponge City is to develop a coupled green-grey-blue system which consists of green infrastructure at the source, grey infrastructure (i.e. drainage system) at the midway and receiving water bodies as the blue part at the terminal. However, the current approaches for assessing the performance of Sponge City construction are confined to green-grey systems and do not adequately reflect the effectiveness in runoff reduction and the impacts on receiving water bodies. This paper proposes an integrated assessment framework of coupled green-grey-blue systems on compliance of water quantity and quality control targets in Sponge City construction. Rainfall runoff and river system models are coupled to provide quantitative simulation evaluations of a number of indicators of landbased and river quality. A multi-criteria decision-making method, i.e., Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) is adopted to rank design alternatives and identify the optimal alternative for Sponge City construction. The effectiveness of this framework is demonstrated in a typical plain river network area of Suzhou, China. The results demonstrate that the performance of Sponge City strategies increases with large scale deployment under smaller rainfall events. In addition, though surface runoff has a dilution effect on the river water quality, the control of surface pollutants can play a significant role in the river water quality improvement. This framework can be applied to Sponge City projects to achieve the enhancement of urban water management.
Keywords: Low impact development | Sponge City | Green-grey-blue system | Performance assessment | TOPSIS
مقاله انگلیسی
5 Host transcriptomic signature as alternative test-of-cure in visceral leishmaniasis patients co-infected with HIV
امضای transcriptomic میزبان به عنوان گزینه درمانی جایگزین در بیماران لیشمانیوز احشایی آلوده به HIV-2020
Visceral leishmaniasis (VL) treatment in HIV patients very often fails and is followed by high relapse and case-fatality rates. Hence, treatment efficacy assessment is imperative but based on invasive organ aspiration for parasite detection. In the search of a less-invasive alternative and because the host immune response is pivotal for treatment outcome in immunocompromised VL patients, we studied changes in the whole blood transcriptional profile of VL-HIV patients during treatment. Methods: Embedded in a clinical trial in Northwest Ethiopia, RNA-Seq was performed on whole blood samples of 28 VL-HIV patients before and after completion of a 29-day treatment regimen of AmBisome or AmBisome/ miltefosine. Pathway analyses were combined with a machine learning approach to establish a clinically-useful 4-gene set. Findings: Distinct signatures of differentially expressed genes between D0 and D29 were identified for patients who failed treatment and were successfully treated. Pathway analyses in the latter highlighted a downregulation of genes associated with host cellular activity and immunity, and upregulation of antimicrobial peptide activity in phagolysosomes. No signs of disease remission nor pathway enrichment were observed in treatment failure patients. Next, we identified a 4-gene pre-post signature (PRSS33, IL10, SLFN14, HRH4) that could accurately discriminate treatment outcome at end of treatment (D29), displaying an average area-under-the-ROC-curve of 0.95 (CI: 0.751.00). Interpretation: A simple blood-based signature thus holds significant promise to facilitate treatment efficacy monitoring and provide an alternative test-of-cure to guide patient management in VL-HIV patients. Funding: Project funding was provided by the AfricoLeish project, supported by the European Union Seventh Framework Programme (EU FP7).
Keywords: Visceral leishmaniasis | HIV | RNA signature | Treatment efficacy | Blood signature
مقاله انگلیسی
6 چارچوب حاکمیتی هوش تجاری در دانشگاه: مطالعه موردی دانشگاه دو لا کاستا
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 8 - تعداد صفحات فایل doc فارسی: 25
دانشگاه ها و شرکت ها دارای فرآیندهای تصمیم گیری هستند که به آنها اجازه می دهد تا به اهداف سازمانی دست پیدا کنند. در حال حاضر، تحلیل داده ها نقش مهمی در ایجاد دانش، بدست آوردن الگوهای مهم و پیش بینی استراتژی ها ایفا می کنند.این مقاله طراحی چارچوب نظارت هوش تجاری را برای دانشگاه دو لا کاستا ارائه کرده است که به آسانی برای سازمان های دیگر هم قابل استفاده است. برای این منظور، تشخیص انجام شده به منظور شناسایی میزان بلوغ تحلیلی انجام شده است. با استفاده از این چشم انداز، مدلی برای تقویت فرهنگ سازمانی ، زیر ساختارها، مدیریت داده، تحلیل داده و نظارت ارائه شده است.این مدل در بر گیرنده تعریف چارچوب نظارتی، اصول هدایت کننده، استراتژی ها، نهادهای تصمیم گیرنده و نقش ها می باشد. بنابراین، این چارچوب برای استفاده از کنترل های موثر جهت اطمینان از موفقیت پروژه های هوش تجاری و دست یابی به اهداف برنامه توسعه همراه با چسم انداز تحلیلی سازمان ارائه شده است.
کلمات کلیدی: هوش تجاری | نظارت | دانشگاه | تحلیل | تصمیم گیری
مقاله ترجمه شده
7 Democratization of AI, Albeit Constrained IoT Devices & Tiny ML, for Creating a Sustainable Food Future
دموکراتیک سازی هوش مصنوعی ، دستگاه های محدود IoT و Tiny ML ، برای ایجاد آینده غذایی پایدار-2020
Abstract—Big Data surrounds us. Every minute, our smartphone collects huge amount of data from geolocations to next clickable item on the ecommerce site. Data has become one of the most important commodities for the individuals and companies. Nevertheless, this data revolution has not touched every economic sector, especially rural economies, e.g., small farmers have largely passed over the data revolution, in the developing countries due to infrastructure and compute constrained environments. Not only this is a huge missed opportunity for the big data companies, it is one of the significant obstacle in the path towards sustainable food and a huge inhibitor closing economic disparities. The purpose of the paper is to develop a framework to deploy artificial intelligence models in constrained compute environments that enable remote rural areas and small farmers to join the data revolution and start contribution to the digital economy and empowers the world through the data to create a sustainable food for our collective future.
Keywords: edge | IoT device | artificial intelligence | Kalman filter | dairy cloud | small scale farmers | hardware constrained model | tiny ML| Hanumayamma | cow necklace
مقاله انگلیسی
8 Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty
تجزیه و تحلیل جایگزین قدرت تطبیقی مبتنی بر یادگیری تقویتی برای مدیریت انرژی سیستم های ذخیره سازی انرژی ترکیبی مستقل با توجه به عدم اطمینان-2020
Hybrid energy storage systems (HESS) involve synergies between multiple energy storage technologies with complementary operating features aimed at enhancing the reliability of intermittent renewable energy sources (RES). Nevertheless, coordinating HESS through optimized energy management strategies (EMS) introduces complexity. The latter has been previously addressed by the authors through a systems-level graphical EMS via Power Pinch Analysis (PoPA). Although of proven efficiency, accounting for uncertainty with PoPA has been an issue, due to the assumption of a perfect day ahead (DA) generation and load profiles forecast. This paper proposes three adaptive PoPA-based EMS, aimed at negating load demand and RES stochastic variability. Each method has its own merits such as; reduced computational complexity and improved accuracy depending on the probability density function of uncertainty. The first and simplest adaptive scheme is based on a receding horizon model predictive control framework. The second employs a Kalman filter, whereas the third is based on a machine learning algorithm. The three methods are assessed on a real isolated HESS microgrid built in Greece. In validating the proposed methods against the DA PoPA, the proposed methods all performed better with regards to violation of the energy storage operating constraints and plummeting carbon emission footprint.
Keywords: Hybrid energy storage systems | Energy management strategies | Model predictive control | Kalman filter | Reinforcement learning
مقاله انگلیسی
9 Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle
استراتژی مدیریت انرژی مبتنی بر یادگیری تقویتی عمیق قانون برای خودروی الکتریکی هیبریدی تقسیم برق-2020
The optimization and training processes of deep reinforcement learning (DRL) based energy management strategy (EMS) can be very slow and resource-intensive. In this paper, an improved energy management framework that embeds expert knowledge into deep deterministic policy gradient (DDPG) is proposed. Incorporated with the battery characteristics and the optimal brake specific fuel consumption (BSFC) curve of hybrid electric vehicles (HEVs), we are committed to solving the optimization problem of multi-objective energy management with a large space of control variables. By incorporating this prior knowledge, the proposed framework not only accelerates the learning process, but also gets a better fuel economy, thus making the energy management system relatively stable. The experimental results show that the proposed EMS outperforms the one without prior knowledge and the other state-of-art deep reinforcement learning approaches. In addition, the proposed approach can be easily generalized to other types of HEV EMSs.
Keywords: Energy management strategy | Hybrid electric vehicle | Expert knowledge | Deep deterministic policy gradient | Continuous action space
مقاله انگلیسی
10 MISS-D: A fast and scalable framework of medical image storage service based on distributed file system
MISS-D: یک چارچوب سریع و مقیاس پذیر از خدمات ذخیره سازی تصویر پزشکی بر اساس سیستم فایل توزیع شده-2020
Background and Objective Processing of medical imaging big data is deeply challenging due to the size of data, computational complexity, security storage and inherent privacy issues. Traditional picture archiving and communication system, which is an imaging technology used in the healthcare industry, generally uses centralized high performance disk storage arrays in the practical solutions. The existing storage solutions are not suitable for the diverse range of medical imaging big data that needs to be stored reliably and accessed in a timely manner. The economical solution is emerging as the cloud computing which provides scalability, elasticity, performance and better managing cost. Cloud based storage architecture for medical imaging big data has attracted more and more attention in industry and academia. Methods This study presents a novel, fast and scalable framework of medical image storage service based on distributed file system. Two innovations of the framework are introduced in this paper. An integrated medical imaging content indexing file model for large-scale image sequence is designed to adapt to the high performance storage efficiency on distributed file system. A virtual file pooling technology is proposed, which uses the memory-mapped file method to achieve an efficient data reading process and provides the data swapping strategy in the pool. Result The experiments show that the framework not only has comparable performance of reading and writing files which meets requirements in real-time application domain, but also bings greater convenience for clinical system developers by multiple client accessing types. The framework supports different user client types through the unified micro-service interfaces which basically meet the needs of clinical system development especially for online applications. The experimental results demonstrate the framework can meet the needs of real-time data access as well as traditional picture archiving and communication system. Conclusions This framework aims to allow rapid data accessing for massive medical images, which can be demonstrated by the online web client for MISS-D framework implemented in this paper for real-time data interaction. The framework also provides a substantial subset of features to existing open-source and commercial alternatives, which has a wide range of potential applications.
Keywords: Hadoop distributed file system | Data packing | Memory mapping file | Message queue | Micro-service | Medical imaging
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi