دانلود و نمایش مقالات مرتبط با OSI::صفحه 1
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت (6037997535328901 بانک ملی ناصر خنجری ) مقاله خود را دریافت کنید (تا مشکل رفع گردد). 

نتیجه جستجو - OSI

تعداد مقالات یافته شده: 3986
ردیف عنوان نوع
1 Data Mining Strategies for Real-Time Control in New York City
استراتژی داده کاوی برای کنترل زمان واقعی در شهر نیویورک-2105
The Data Mining System (DMS) at New York City Department of Transportation (NYCDOT) mainly consists of four database systems for traffic and pedestrian/bicycle volumes, crash data, and signal timing plans as well as the Midtown in Motion (MIM) systems which are used as part of the NYCDOT Intelligent Transportation System (ITS) infrastructure. These database and control systems are operated by different units at NYCDOT as an independent database or operation system. New York City experiences heavy traffic volumes, pedestrians and cyclists in each Central Business District (CBD) area and along key arterial systems. There are consistent and urgent needs in New York City for real-time control to improve mobility and safety for all users of the street networks, and to provide a timely response and management of random incidents. Therefore, it is necessary to develop an integrated DMS for effective real-time control and active transportation management (ATM) in New York City. This paper will present new strategies for New York City suggesting the development of efficient and cost-effective DMS, involving: 1) use of new technology applications such as tablets and smartphone with Global Positioning System (GPS) and wireless communication features for data collection and reduction; 2) interface development among existing database and control systems; and 3) integrated DMS deployment with macroscopic and mesoscopic simulation models in Manhattan. This study paper also suggests a complete data mining process for real-time control with traditional static data, current real timing data from loop detectors, microwave sensors, and video cameras, and new real-time data using the GPS data. GPS data, including using taxi and bus GPS information, and smartphone applications can be obtained in all weather conditions and during anytime of the day. GPS data and smartphone application in NYCDOT DMS is discussed herein as a new concept. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshu Keywords: Data Mining System (DMS), New York City, real-time control, active transportation management (ATM), GPS data
مقاله انگلیسی
2 IoT architecture for continuous long term monitoring: Parkinson’s Disease case study
معماری اینترنت اشیا برای نظارت طولانی مدت مداوم: مطالعه موردی بیماری پارکینسون-2022
In recent years, technological advancements and the strengthening of the Internet of Things concepts have led to significant improvements in the technology infrastructures for remote monitoring. This includes telemedicine which is the ensemble of technologies and tools involved in medical services, from consultations, to diagnosis, prescriptions, treatment and patient monitoring, all done remotely via an Internet connection.
Developing a telemedicine framework capable of monitoring patients over a continuous long-term monitoring window may encounter various issues related to the battery life of the device or the accuracy of the retrieved data. Moreover, it is crucial to develop an IoT architecture that is adaptable to various scenarios and the ongoing changes of the application scenario under analysis.
In this work, we present an IoT architecture for continuous long-term monitoring of patients. Furthermore, as a real scenario case study, we adapt our IoT architecture for Parkinson’s Disease management, building up the PDRMA (Parkinson’s disease remote monitoring architecture). Performance analysis for optimal operation with respect to temperature and daily battery life is conducted. Finally, a multi-parameter app for the continuous monitoring of Parkinson’s patients is presented.
keywords: IoT | Telemedicine | Continuous long term monitoring | Parkinson’s disease | e-Health
مقاله انگلیسی
3 Direct Quantum Communications in the Presence of Realistic Noisy Entanglement
ارتباطات کوانتومی مستقیم در حضور درهم تنیدگی پر سر و صدا واقعی-2022
To realize the Quantum Internet, quantum communications require pre-shared entanglement among quantum nodes. However, both the generation and the distribution of the maximally-entangled quantum states are inherently contaminated by quantum decoherence. Conventionally, the quantum decoherence is mitigated by performing the consecutive steps of quantum entanglement distillation followed by quantum teleportation. However, this conventional approach imposes a long delay. To circumvent this impediment, we propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement, which eliminates the sequential steps imposing delay in the standard approach. More precisely, our proposed scheme can be viewed as a direct quantum communication scheme capable of improving the quantum bit error ratio (QBER) of the logical qubits despite relying on realistic noisy pre-shared entanglement. Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput compared to the existing state-of-the-art quantum communication schemes, despite requiring fewer quantum gates.
Index Terms: Quantum communication | quantum entanglement | quantum error-correction | quantum stabilizer codes | Quantum Internet.
مقاله انگلیسی
4 Is the Internet of Things a helpful employee? An exploratory study of discourses of Canadian farmers
آیا اینترنت اشیا یک کارمند مفید است؟ بررسی اکتشافی گفتمان های کشاورزان کانادایی-2022
The increasing global population and the growing demand for high-quality products have called for the modernization of agriculture. “Internet of Things” is one of the technologies that is pre- dicted to offer many solutions. We conducted a discourse analysis of 19 interviews with farmers in Ontario, Canada, asking them to describe their experience of working with IoT and related technologies. One main discourse with two opposing tendencies was identified: farmers recognize their relationship with IoT and related technology and view technology as a kind of “employee”, but some tend to emphasize (1) an optimistic view which is discourse of technology is a “Helpful Employee”; while others tend to emphasize (2) a pessimistic view which is a discourse of tech- nology is an “Untrustworthy Employee”. We examine these tendencies in the light of the literature on organizational behavior and identify potential outcomes of these beliefs. The results suggest that a farmer’s style of approaching technology can be assessed on a similar scale as managers’ view of their employees and provide a framework for further research.
keywords: فناوری اینترنت اشیا | کشاورزی | تحلیل گفتمان | سبک استفاده از تکنولوژی | Internet of things technology | Agriculture | Discourse analysis | Style of use of technology
مقاله انگلیسی
5 Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding
دوگانگی بین کدگذاری منبع با اطلاعات جانبی کوانتومی و کدگذاری کانال کوانتومی کلاسیک-2022
In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, generalizing the classical results of Ahlswede and Dueck [IEEE Trans. Inf. Theory, 28(3):430–443, 1982]. We establish duality both at the operational level and at the level of the entropic quantities characterizing these exponents. For the latter, the duality is given by an exact relation, whereas for the former, duality manifests itself in the following sense: an optimal coding strategy for one task can be used to construct an optimal coding strategy for the other task. Along the way, we derive a bound on the error exponent for classical-quantum channel coding with constant composition codes which might be of independent interest. Finally, we consider the task of variable-length classical compression with quantum side information, and a duality relation between this task and classical-quantum channel coding can also be established correspondingly. Furthermore, we study the strong converse of this task, and show that the strong converse property does not hold even in the i.i.d. scenario.
Index Terms: Duality | classical-quantum channel coding | quantum side information | error exponent | strong converse | Slepian-Wolf coding.
مقاله انگلیسی
6 Effects of Dynamical Decoupling and Pulse-Level Optimizations on IBM Quantum Computers
اثرات جداسازی دینامیکی و بهینه سازی سطح پالس بر روی کامپیوترهای کوانتومی IBM-2022
Currently available quantum computers are prone to errors. Circuit optimization and error mitigation methods are needed to design quantum circuits to achieve better fidelity when executed on NISQ hardware. Dynamical decoupling (DD) is generally used to suppress the decoherence error, and different DD strategies have been proposed. Moreover, the circuit fidelity can be improved by pulse-level optimization, such as creating hardware-native pulse-efficient gates. This article implements all the popular DD sequences and evaluates their performances on IBM quantum chips with different characteristics for various wellknown quantum applications. Also, we investigate combining DD with the pulse-level optimization method and apply them to QAOA to solve the max-cut problem. Based on the experimental results, we find that DD can be a benefit for only certain types of quantum algorithms, while the combination of DD and pulse-level optimization methods always has a positive impact. Finally, we provide several guidelines for users to learn how to use these noise mitigation methods to build circuits for quantum applications with high fidelity on IBM quantum computers.
INDEX TERMS: Error mitigation | noisy intermediate-scale quantum (NISQ) hardware.
مقاله انگلیسی
7 Efficient Floating Point Arithmetic for Quantum Computers
محاسبات ممیز شناور کارآمد برای کامپیوترهای کوانتومی-2022
One of the major promises of quantum computing is the realization of SIMD (single instruction - multiple data) operations using the phenomenon of superposition. Since the dimension of the state space grows exponentially with the number of qubits, we can easily reach situations where we pay less than a single quantum gate per data point for data-processing instructions, which would be rather expensive in classical computing. Formulating such instructions in terms of quantum gates, however, still remains a challenging task. Laying out the foundational functions for more advanced data-processing is therefore a subject of paramount importance for advancing the realm of quantum computing. In this paper, we introduce the formalism of encoding so called-semi-boolean polynomials. As it turns out, arithmetic Z=2nZ ring operations can be formulated as semi-boolean polynomial evaluations, which allows convenient generation of unsigned integer arithmetic quantum circuits. For arithmetic evaluations, the resulting algorithm has been known as Fourier-arithmetic. We extend this type of algorithm with additional features, such as ancillafree in-place multiplication and integer coefficient polynomial evaluation. Furthermore, we introduce a tailor-made method for encoding signed integers succeeded by an encoding for arbitrary floating-point numbers. This representation of floating-point numbers and their processing can be applied to any quantum algorithm that performs unsigned modular integer arithmetic. We discuss some further performance enhancements of the semi boolean polynomial encoder and finally supply a complexity estimation. The application of our methods to a 32-bit unsigned integer multiplication demonstrated a 90% circuit depth reduction compared to carry-ripple approaches.
INDEX TERMS: Quantum arithmetic | quantum computing | floating point arithmetic.
مقاله انگلیسی
8 A robust structural vibration recognition system based on computer vision
یک سیستم قوی تشخیص ارتعاش ساختاری بر اساس بینایی کامپیوتری-2022
Vibration-based structural health monitoring (SHM) systems are useful tools for assessing structural safety performance quantitatively. When employing traditional contact sensors, achieving high-resolution spatial measurements for large-scale structures is challenging, and fixed contact sensors may also lose dependability when the lifetime of the host structure is surpassed. Researchers have paid close attention to computer vision because it is noncontact, saves time and effort, is inexpensive, and has high efficiency in giving visual perception. In advanced noncontact measurements, digital cameras can capture the vibration information of structures remotely and swiftly. Thus, this work studies a system for recognizing structural vibration. The system ensures acquiring high-quality structural vibration signals by the following: 1) Establishing a novel image preprocessing, which includes visual partitioning measurement and image enhancement techniques; 2) initial recognition of structural vibration using phase-based optical flow estimation (POFE), which introduces 2-D Gabor wavelets to extract the independent phase information of the image to track the natural texture targets on the surface of the structure; 3) extracting the practical vibration information of the structure using mode decomposition to remove the complex environment of the camera vibration and other noises; 4) employing phase-based motion magnification (PMM) techniques to magnify small vibration signals, and then recognizing the complete information on the vibration time range of the structure. The research results of the laboratory experiments and field testing conducted under three different cases reveal that the system can recognize structural vibration in complicated environments.
keywords: Computer vision | Phase | Motion estimation | Motion magnification | Mode decomposition | Structural vibration
مقاله انگلیسی
9 Head tremor in cervical dystonia: Quantifying severity with computer vision
لرزش سر در دیستونی دهانه رحم: کمی کردن شدت با دید کامپیوتری-2022
Background: Head tremor (HT) is a common feature of cervical dystonia (CD), usually quantified by subjective observation. Technological developments offer alternatives for measuring HT severity that are objective and amenable to automation. Objectives: Our objectives were to develop CMOR (Computational Motor Objective Rater; a computer vision- based software system) to quantify oscillatory and directional aspects of HT from video recordings during a clinical examination and to test its convergent validity with clinical rating scales. Methods: For 93 participants with isolated CD and HT enrolled by the Dystonia Coalition, we analyzed video recordings from an examination segment in which participants were instructed to let their head drift to its most comfortable dystonic position. We evaluated peak power, frequency, and directional dominance, and used Spearman’s correlation to measure the agreement between CMOR and clinical ratings. Results: Power averaged 0.90 (SD 1.80) deg2/Hz, and peak frequency 1.95 (SD 0.94) Hz. The dominant HT axis was pitch (antero/retrocollis) for 50%, roll (laterocollis) for 6%, and yaw (torticollis) for 44% of participants. One-sided t-tests showed substantial contributions from the secondary (t = 18.17, p < 0.0001) and tertiary (t = 12.89, p < 0.0001) HT axes. CMOR’s HT severity measure positively correlated with the HT item on the Toronto Western Spasmodic Torticollis Rating Scale-2 (Spearman’s rho = 0.54, p < 0.001). Conclusions: We demonstrate a new objective method to measure HT severity that requires only conventional video recordings, quantifies the complexities of HT in CD, and exhibits convergent validity with clinical severity ratings.
keywords: لرزش سر | ویدیو | بینایی کامپیوتر | درجه بندی شدت | TWSTRS | Head tremor | Video | Computer vision | Severity rating | TWSTRS
مقاله انگلیسی
10 Efficient Quantum State Preparation for the Cauchy Distribution Based on Piecewise Arithmetic
آماده سازی حالت کوانتومی کارآمد برای توزیع کوشی بر اساس حساب تکه ای-2022
The benefits of the quantum Monte Carlo algorithm heavily rely on the efficiency of the superposition state preparation. So far, most reported Monte Carlo algorithms use the Grover–Rudolph state preparation method, which is suitable for efficiently integrable distribution functions. Consequently, most reported works are based on log-concave distributions, such as normal distributions. However, non-log-concave distributions still have many uses, such as in financial modeling. Recently, a new method was proposed that does not need integration to calculate the rotation angle for state preparation. However, performing efficient state preparation is still difficult due to the high cost associated with high precision and low error in the calculation for the rotation angle. Many methods of quantum state preparation use polynomial Taylor approximations to reduce the computation cost. However, Taylor approximations do not work well with heavy-tailed distribution functions that are not bounded exponentially. In this article, we present a method of efficient state preparation for heavy-tailed distribution functions. Specifically, we present a quantum gate-level algorithm to prepare quantum superposition states based on the Cauchy distribution, which is a non-log-concave heavy-tailed distribution. Our procedure relies on a piecewise polynomial function instead of a single Taylor approximation to reduce computational cost and increase accuracy. The Cauchy distribution is an even function, so the proposed piecewise polynomial contains only a quadratic term and a constant term to maintain the simplest approximation of an even function. Numerical analysis shows that the required number of subdomains increases linearly as the approximation error decreases exponentially. Furthermore, the computation complexity of the proposed algorithm is independent of the number of subdomains in the quantum implementation of the piecewise function due to quantum parallelism. An example of the proposed algorithm based on a simulation conducted in Qiskit is presented to demonstrate its capability to perform state preparation based on the Cauchy distribution.
INDEX TERMS: Algorithms | gate operations | quantum computing.
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 2986 :::::::: بازدید دیروز: 3097 :::::::: بازدید کل: 37253 :::::::: افراد آنلاین: 43