دانلود و نمایش مقالات مرتبط با Ope::صفحه 1
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت (6037997535328901 بانک ملی ناصر خنجری ) مقاله خود را دریافت کنید (تا مشکل رفع گردد). 

نتیجه جستجو - Ope

تعداد مقالات یافته شده: 7050
ردیف عنوان نوع
1 Data Mining Strategies for Real-Time Control in New York City
استراتژی داده کاوی برای کنترل زمان واقعی در شهر نیویورک-2105
The Data Mining System (DMS) at New York City Department of Transportation (NYCDOT) mainly consists of four database systems for traffic and pedestrian/bicycle volumes, crash data, and signal timing plans as well as the Midtown in Motion (MIM) systems which are used as part of the NYCDOT Intelligent Transportation System (ITS) infrastructure. These database and control systems are operated by different units at NYCDOT as an independent database or operation system. New York City experiences heavy traffic volumes, pedestrians and cyclists in each Central Business District (CBD) area and along key arterial systems. There are consistent and urgent needs in New York City for real-time control to improve mobility and safety for all users of the street networks, and to provide a timely response and management of random incidents. Therefore, it is necessary to develop an integrated DMS for effective real-time control and active transportation management (ATM) in New York City. This paper will present new strategies for New York City suggesting the development of efficient and cost-effective DMS, involving: 1) use of new technology applications such as tablets and smartphone with Global Positioning System (GPS) and wireless communication features for data collection and reduction; 2) interface development among existing database and control systems; and 3) integrated DMS deployment with macroscopic and mesoscopic simulation models in Manhattan. This study paper also suggests a complete data mining process for real-time control with traditional static data, current real timing data from loop detectors, microwave sensors, and video cameras, and new real-time data using the GPS data. GPS data, including using taxi and bus GPS information, and smartphone applications can be obtained in all weather conditions and during anytime of the day. GPS data and smartphone application in NYCDOT DMS is discussed herein as a new concept. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshu Keywords: Data Mining System (DMS), New York City, real-time control, active transportation management (ATM), GPS data
مقاله انگلیسی
2 Deep Reinforcement Learning With Quantum-Inspired Experience Replay
یادگیری تقویتی عمیق با تکرار تجربه کوانتومی-2022
In this article, a novel training paradigm inspired by quantum computation is proposed for deep reinforcement learning (DRL) with experience replay. In contrast to the traditional experience replay mechanism in DRL, the proposed DRL with quantum-inspired experience replay (DRL-QER) adaptively chooses experiences from the replay buffer according to the complexity and the replayed times of each experience (also called transition), to achieve a balance between exploration and exploitation. In DRL-QER, transitions are first formulated in quantum representations and then the preparation operation and depreciation operation are performed on the transitions. In this process, the preparation operation reflects the relationship between the temporal-difference errors (TD-errors) and the importance of the experiences, while the depreciation operation is taken into account to ensure the diversity of the transitions. The experimental results on Atari 2600 games show that DRL-QER outperforms state-of-the-art algorithms, such as DRL-PER and DCRL on most of these games with improved training efficiency and is also applicable to such memory-based DRL approaches as double network and dueling network.
Index Terms: Deep reinforcement learning (DRL) | quantum computation | quantum-inspired experience replay (QER) | quantum reinforcement learning.
مقاله انگلیسی
3 Deployment-Ready Quantum Key Distribution Over a Classical Network Infrastructure in Padua
توزیع کلید کوانتومی آماده استقرار بر روی یک زیرساخت شبکه کلاسیک در پادوآ-2022
Current technological progress is driving Quantum Key Distribution towards a commercial and worldwide scale expansion. Its capability to deliver secure communication regardless of the computational power of the attackers will be a fundamental feature in the next generations of telecommunication networks. Nevertheless, demonstrations of QKD implementation in a real operating scenario and their coexistence with the classical telecom infrastructure are of fundamental importance for reliable exploitation. Here we present a Quantum Key Distribution application implemented over a classical fiber-based infrastructure. We exploit a 50 MHz source at 1550 nm, a single 13 km-long fiber cable for both the quantum and the classical channel, and a simplified receiver scheme with just one single-photon detector. In this way, we achieve an error rate of approximately 2% and a secret key rate of about 1.7 kbps, thus demonstrating the feasibility of low-cost and ready-to-use Quantum Key Distribution systems compatible with standard classical infrastructure.
Index Terms: Classical channel | cryptography | fiber, FPGA | padua | POGNAC | quantum communication | quantum key distribution | qubit4sync | telecommunication.
مقاله انگلیسی
4 IoT architecture for continuous long term monitoring: Parkinson’s Disease case study
معماری اینترنت اشیا برای نظارت طولانی مدت مداوم: مطالعه موردی بیماری پارکینسون-2022
In recent years, technological advancements and the strengthening of the Internet of Things concepts have led to significant improvements in the technology infrastructures for remote monitoring. This includes telemedicine which is the ensemble of technologies and tools involved in medical services, from consultations, to diagnosis, prescriptions, treatment and patient monitoring, all done remotely via an Internet connection.
Developing a telemedicine framework capable of monitoring patients over a continuous long-term monitoring window may encounter various issues related to the battery life of the device or the accuracy of the retrieved data. Moreover, it is crucial to develop an IoT architecture that is adaptable to various scenarios and the ongoing changes of the application scenario under analysis.
In this work, we present an IoT architecture for continuous long-term monitoring of patients. Furthermore, as a real scenario case study, we adapt our IoT architecture for Parkinson’s Disease management, building up the PDRMA (Parkinson’s disease remote monitoring architecture). Performance analysis for optimal operation with respect to temperature and daily battery life is conducted. Finally, a multi-parameter app for the continuous monitoring of Parkinson’s patients is presented.
keywords: IoT | Telemedicine | Continuous long term monitoring | Parkinson’s disease | e-Health
مقاله انگلیسی
5 Development of an Undergraduate Quantum Engineering Degree
توسعه یک مدرک کارشناسی مهندسی کوانتوم-2022
Quantum computing, communications, sensing, and simulations are radically transformative technologies, with great potential to impact industries and economies. Worldwide, national governments, industries, and universities are moving to create a new class of workforce—the Quantum Engineers. Demand for such engineers is predicted to be in the tens of thousands within a five-year timescale, far exceeding the rate at which the world’s universities can produce Ph.D. graduates in the discipline. How best to train this next generation of engineers is currently a matter of debate. Quantum mechanics—long a pillar of traditional physics undergraduate degrees—must now be merged with traditional engineering offerings. This article discusses the history, development, and the first year of operation of the world’s first undergraduate degree in quantum engineering to be grown out of an engineering curriculum. The main purpose of this article is to inform the wider discussion, now being held by many institutions worldwide, on how best to formally educate the Quantum Engineer.
INDEX TERMS: Degree | education | engineering | quantum | undergraduate.
مقاله انگلیسی
6 IoTracker: A probabilistic event tracking approach for data-intensive IoT Smart Applications
IoTracker: یک رویکرد ردیابی رویداد احتمالی برای برنامه‌های هوشمند اینترنت اشیا با داده های فشرده-2022
Smart Applications for cities, industry, farming and healthcare use Internet of Things (IoT) approaches to improve the general quality. A dependency on smart applications implies that any misbehavior may impact our society with varying criticality levels, from simple inconveniences to life-threatening dangers. One critical challenge in this area is to overcome the side effects caused by data loss due to failures in software, hardware, and communication systems, which may also affect data logging systems. Event traceability and auditing may be impaired when an application makes automated decisions and the operating log is incomplete. In an environment where many events happen automatically, an audit system must understand, validate, and find the root causes of eventual failures. This paper presents a probabilistic approach to track sequences of events even in the face of logging data loss using Bayesian networks. The results of the performance analysis with three smart application scenarios show that this approach is valid to track events in the face of incomplete data. Also, scenarios modeled with Bayesian subnets highlight a decreasing complexity due to this divide and conquer strategy that reduces the number of elements involved. Consequently, the results improve and also reveal the potential for further advancement.
Keywords: Smart applications | Event tracker | Probabilistic tracker | Bayesian networks
مقاله انگلیسی
7 Discriminating Quantum States in the Presence of a Deutschian CTC: A Simulation Analysis
حالت های کوانتومی متمایز در حضور CTC Deutschian: یک تحلیل شبیه سازی-2022
In an article published in 2009, Brun et al. proved that in the presence of a “Deutschian” closed timelike curve, one can map K distinct nonorthogonal states (hereafter, input set) to the standard orthonormal basis of a K-dimensional state space. To implement this result, the authors proposed a quantum circuit that includes, among SWAP gates, a fixed set of controlled operators (boxes) and an algorithm for determining the unitary transformations carried out by such boxes. To our knowledge, what is still missing to complete the picture is an analysis evaluating the performance of the aforementioned circuit from an engineering perspective. The objective of this article is, therefore, to address this gap through an in-depth simulation analysis, which exploits the approach proposed by Brun et al. in 2017. This approach relies on multiple copies of an input state, multiple iterations of the circuit until a fixed point is (almost) reached. The performance analysis led us to a number of findings. First, the number of iterations is significantly high even if the number of states to be discriminated against is small, such as 2 or 3. Second, we envision that such a number may be shortened as there is plenty of room to improve the unitary transformation acting in the aforementioned controlled boxes. Third, we also revealed a relationship between the number of iterations required to get close to the fixed point and the Chernoff limit of the input set used: the higher the Chernoff bound, the smaller the number of iterations. A comparison, although partial, with another quantum circuit discriminating the nonorthogonal states, proposed by Nareddula et al. in 2018, is carried out and differences are highlighted.
INDEX TERMS: Benchmarking and performance characterization | classical simulation of quantum systems.
مقاله انگلیسی
8 iRestroom : A smart restroom cyberinfrastructure for elderly people
iRestroom: زیرساخت سایبری سرویس بهداشتی هوشمند برای افراد مسن-2022
According to a report by UN and WHO, by 2030 the number of senior people (age over 65) is projected to grow up to 1.4 billion, and which is nearly 16.5% of the global population. Seniors who live alone must have their health state closely monitored to avoid unexpected events (such as a fall). This study explains the underlying principles, methodology, and research that went into developing the concept, as well as the need for and scopes of a restroom cyberinfrastructure system, that we call as iRestroom to assess the frailty of elderly people for them to live a comfortable, independent, and secure life at home. The proposed restroom idea is based on the required situations, which are determined by user study, socio-cultural and technological trends, and user requirements. The iRestroom is designed as a multi-sensory place with interconnected devices where carriers of older persons can access interactive material and services throughout their everyday activities. The prototype is then tested at Texas A&M University-Kingsville. A Nave Bayes classifier is utilized to anticipate the locations of the sensors, which serves to provide a constantly updated reference for the data originating from numerous sensors and devices installed in different locations throughout the restroom. A small sample of pilot data was obtained, as well as pertinent web data. The Institutional Review Board (IRB) has approved all the methods.
keywords: اینترنت اشیا | حسگرها | نگهداری از سالمندان | سیستم های هوشمند | یادگیری ماشین | IoT | Sensors | Elder Care | Smart Systems | Machine Learning
مقاله انگلیسی
9 Duality Between Source Coding With Quantum Side Information and Classical-Quantum Channel Coding
دوگانگی بین کدگذاری منبع با اطلاعات جانبی کوانتومی و کدگذاری کانال کوانتومی کلاسیک-2022
In this paper, we establish an interesting duality between two different quantum information-processing tasks, namely, classical source coding with quantum side information, and channel coding over classical-quantum channels. The duality relates the optimal error exponents of these two tasks, generalizing the classical results of Ahlswede and Dueck [IEEE Trans. Inf. Theory, 28(3):430–443, 1982]. We establish duality both at the operational level and at the level of the entropic quantities characterizing these exponents. For the latter, the duality is given by an exact relation, whereas for the former, duality manifests itself in the following sense: an optimal coding strategy for one task can be used to construct an optimal coding strategy for the other task. Along the way, we derive a bound on the error exponent for classical-quantum channel coding with constant composition codes which might be of independent interest. Finally, we consider the task of variable-length classical compression with quantum side information, and a duality relation between this task and classical-quantum channel coding can also be established correspondingly. Furthermore, we study the strong converse of this task, and show that the strong converse property does not hold even in the i.i.d. scenario.
Index Terms: Duality | classical-quantum channel coding | quantum side information | error exponent | strong converse | Slepian-Wolf coding.
مقاله انگلیسی
10 The physical and mechanical properties for flexible biomass particles using computer vision
خواص فیزیکی و مکانیکی ذرات زیست توده انعطاف پذیر با استفاده از بینایی کامپیوتری-2022
The combustion and fluidization behavior of biomass depend on the physical properties (size, morphology, and density) and mechanical performances (elastic modulus, Poisson’s ratio, tensile strength and failure strain), but their quantitative models have rarely been focused in previous researchers. Hence, a static image measurement for particle physical properties is studied. Combining the uniaxial tension and digital image correlation tech- nology, the dynamic image measurement method for the mechanical properties is proposed. The results indicate that the average roundness, rectangularity, and sphericity of present biomass particles are 0.2, 0.4, and 0.16, respectively. The equivalent diameter and density obey the skewed normal distribution. The tensile strength and failure stress are sensitive to stretching rate, fiber size and orientation. The distribution intervals of elastic modulus and Poisson’s ratio are 30–600 MPa and 0.25–0.307, respectively. The stress–strain curves obtained from imaging experiments agree well with the result of finite element method. This study provides the operating parameters for the numerical simulation of particles in the fluidized bed and combustor. Furthermore, the computer vision measurement method can be extended to the investigations of fossil fuels.
keywords: ذرات زیست توده | مشخصات فیزیکی | اجرای مکانیکی | تست کشش | آزمایش تصویربرداری | بینایی کامپیوتر | Biomass particle | Physical properties | Mechanical performances | Tensile testing | Imaging experiment | Computer vision
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 1498 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 1498 :::::::: افراد آنلاین: 83