دانلود و نمایش مقالات مرتبط با PSO-ANN::صفحه 1
بلافاصله پس از پرداخت دانلود کنید
نتیجه جستجو - PSO-ANN

تعداد مقالات یافته شده: 3
ردیف عنوان نوع
1 امکان‌سنجی مدل PSO-ANN برای پیش‌بینی میزان نشست سطحی ناشی از تونل زنی
سال انتشار: 2016 - تعداد صفحات فایل pdf انگلیسی: 11 - تعداد صفحات فایل doc فارسی: 23
نشست سطحی احتمالی، به‌ویژه در نواحی شهری، یکی از خطرسازترین عوامل در مترو و دیگر حفاری‌های زیر بنایی است. بنابراین، پیش‌بینی دقیق حداکثر نشست سطحی (MSS) نقش مهمی در به حداقل رساندن ریسک احتمالی وارد آمدن صدمات دارد. در این مقاله یک مدل ترکیبی جدید از شبکه عصبی مصنوعی (ANN) بهینه‌شده توسط الگوریتم بهینه‌سازی ازدحام ذرات (PSO) برای پیش‌بینی MSS ارائه شد. در اینجا، این ترکیب با استفاده از PSO-ANN مختصر می‌شود. به‌منظور نشان دادن عملکرد مدل PSO-ANN پیشنهادی در پیش‌بینی MSS، یک مدل ANN از قبل موجود استفاده شد. برای ایجاد مدل‌های موردنظر، نسبت تنش افقی به عمودی، چسبندگی و مدول¬های یانگ به‌عنوان پارامترهای ورودی انتخاب شدند، درحالی‌که MSS به‌عنوان خروجی سیستم در نظر گرفته شد. یک پایگاه داده متشکل از 143 مجموعه داده حاصل از خط شماره 2 مترو کرج، برای ایجاد مدل‌های پیش‌بینی مورداستفاده قرار گرفت. عملکرد مدل‌های پیش‌بینی با مقایسه پارامترهای پیش‌بینی عملکرد، شامل خطای جذر میانگین مربعات (RMSE)، حساب واریانس برای (VAF) و ضریب همبستگی (R2) مورد ارزیابی قرار گرفت. نتایج نشان می‌دهد که مدل پیشنهادی PSO-ANN قادر به پیش‌بینی MSSبا میزان دقت بالاتر در مقایسه با نتایج ANN است. علاوه بر این، نتایج تجزیه‌وتحلیل حساسیت نشان می‌دهد که نسبت تنش افقی به عمودی اثر بیشتری بر MSS در مقایسه با سایر مدل‌های ورودی دارد.
کلمات کلیدی: تونل زنی | نشست سطحی | PSO-ANN | مدل ترکیبی
مقاله ترجمه شده
2 امکان‌سنجی مدل PSO-ANN برای پیش‌بینی میزان نشست سطحی ناشی از تونل زنی
سال انتشار: 2016 - تعداد صفحات فایل pdf انگلیسی: 11 - تعداد صفحات فایل doc فارسی: 23
نشست سطحی احتمالی، به‌ویژه در نواحی شهری، یکی از خطرسازترین عوامل در مترو و دیگر حفاری‌های زیر بنایی است. بنابراین، پیش‌بینی دقیق حداکثر نشست سطحی (MSS) نقش مهمی در به حداقل رساندن ریسک احتمالی وارد آمدن صدمات دارد. در این مقاله یک مدل ترکیبی جدید از شبکه عصبی مصنوعی (ANN) بهینه‌شده توسط الگوریتم بهینه‌سازی ازدحام ذرات (PSO) برای پیش‌بینی MSS ارائه شد. در اینجا، این ترکیب با استفاده از PSO-ANN مختصر می‌شود. به‌منظور نشان دادن عملکرد مدل PSO-ANN پیشنهادی در پیش‌بینی MSS، یک مدل ANN از قبل موجود استفاده شد. برای ایجاد مدل‌های موردنظر، نسبت تنش افقی به عمودی، چسبندگی و مدول¬های یانگ به‌عنوان پارامترهای ورودی انتخاب شدند، درحالی‌که MSS به‌عنوان خروجی سیستم در نظر گرفته شد. یک پایگاه داده متشکل از 143 مجموعه داده حاصل از خط شماره 2 مترو کرج، برای ایجاد مدل‌های پیش‌بینی مورداستفاده قرار گرفت. عملکرد مدل‌های پیش‌بینی با مقایسه پارامترهای پیش‌بینی عملکرد، شامل خطای جذر میانگین مربعات (RMSE)، حساب واریانس برای (VAF) و ضریب همبستگی (R2) مورد ارزیابی قرار گرفت. نتایج نشان می‌دهد که مدل پیشنهادی PSO-ANN قادر به پیش‌بینی MSSبا میزان دقت بالاتر در مقایسه با نتایج ANN است. علاوه بر این، نتایج تجزیه‌وتحلیل حساسیت نشان می‌دهد که نسبت تنش افقی به عمودی اثر بیشتری بر MSS در مقایسه با سایر مدل‌های ورودی دارد.
کلمات کلیدی: تونل زنی | نشست سطحی | PSO-ANN | مدل ترکیبی
مقاله ترجمه شده
3 امکان‌سنجی مدل PSO-ANN برای پیش‌بینی میزان نشست سطحی ناشی از تونل زنی
سال انتشار: 2016 - تعداد صفحات فایل pdf انگلیسی: 11 - تعداد صفحات فایل doc فارسی: 21
نشست سطحی احتمالی، به‌ویژه در نواحی شهری، یکی از خطرسازترین عوامل در مترو و دیگر حفاری‌های زیر بنایی است. بنابراین، پیش‌بینی دقیق حداکثر نشست سطحی (MSS) نقش مهمی در به حداقل رساندن ریسک احتمالی وارد آمدن صدمات دارد. در این مقاله یک مدل ترکیبی جدید از شبکه عصبی مصنوعی (ANN) بهینه‌شده توسط الگوریتم بهینه‌سازی ازدحام ذرات (PSO) برای پیش‌بینی MSS ارائه شد. در اینجا، این ترکیب با استفاده از PSO-ANN مختصر می‌شود. به‌منظور نشان دادن عملکرد مدل PSO-ANN پیشنهادی در پیش‌بینی MSS، یک مدل ANN از قبل موجود استفاده شد. برای ایجاد مدل‌های موردنظر، نسبت تنش افقی به عمودی، چسبندگی و مدول¬های یانگ به‌عنوان پارامترهای ورودی انتخاب شدند، درحالی‌که MSS به‌عنوان خروجی سیستم در نظر گرفته شد. یک پایگاه داده متشکل از 143 مجموعه داده حاصل از خط شماره 2 مترو کرج، برای ایجاد مدل‌های پیش‌بینی مورداستفاده قرار گرفت. عملکرد مدل‌های پیش‌بینی با مقایسه پارامترهای پیش‌بینی عملکرد، شامل خطای جذر میانگین مربعات (RMSE)، حساب واریانس برای (VAF) و ضریب همبستگی (R2) مورد ارزیابی قرار گرفت. نتایج نشان می‌دهد که مدل پیشنهادی PSO-ANN قادر به پیش‌بینی MSSبا میزان دقت بالاتر در مقایسه با نتایج ANN است. علاوه بر این، نتایج تجزیه‌وتحلیل حساسیت نشان می‌دهد که نسبت تنش افقی به عمودی اثر بیشتری بر MSS در مقایسه با سایر مدل‌های ورودی دارد.
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi