دانلود و نمایش مقالات مرتبط با Pattern Recognition::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی
نتیجه جستجو - Pattern Recognition

تعداد مقالات یافته شده: 38
ردیف عنوان نوع
1 مشتقات ثابت دو بعدی تفکیک پذیر صریح برای تشخیص جسم
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 19
مشتقات ثابت تصویر به طور گسترده ای در زمینه های تشخیص الگو و دید رایانه مورد استفاده قرار گرفته اند، زیرا آنها قادر به ارائه الگوی ویژگی های مستقل تبدیل هندسی هستند. در حال حاضر، ثابت های تفکیک پذیر و مشتقات آنها به دلیل توانایی در ترکیب ویژگی های اساسی ثابت های متعامد مختلف، بیشتر مورد توجه قرار گرفته است. با این حال، بسیاری از مشتق های ثابت تفکیک پذیر موجود، به طور غیرمستقیم از مشتق های هندسی و بر اساس رابطه چندجمله ای متعامد و هندسی، به دست می آیند. بنابراین، در این مقاله، رویکرد مستقیمی برای ساخت مجموعه ای از مشتق های ثابت تفکیک پذیر گسسته Chebichef-Krawtchouk پیشنهاد شد که در آن به طور همزمان مشتق برای چرخش، مقیاس پذیری و تبدیل انتقال فراهم می شود و مبتنی بر فرم صریح چند جمله ای Tchebichef و Krawtchouk است. در نتیجه، نتایج تجربی و نظری اثربخشی روش پیشنهادی اثبات شد و ارجحیت آنها در طبقه بندی تصویر و شناخت الگو در مقایسه با روش های موجود نشان داده شد.
کليدواژه: مشتقات غیرمستقیم | روش صریح | ثابت تفکیک پذیر | چندجمله ای Krawtchouk | چندجمله ای Tchebichef | تشخیص الگو
مقاله ترجمه شده
2 A unique feature extraction using MRDWT for automatic classification of abnormal heartbeat from ECG big data with Multilayered Probabilistic Neural Network classifier
استخراج ویژگی منحصر به فرد با استفاده از MRDWT برای طبقه بندی خودکارضربان قلب غیر طبیعی از داده های بزرگ ECG با چند لایه طبقه بندی احتمالی شبکه عصبی-2018
This paper employs a novel adaptive feature extraction techniques of electrocardiogram (ECG) signal for detection of cardiac arrhythmias using multiresolution discrete wavelet transform from ECG big data. In this paper, five types ECG arrhythmias including normal beats have been classified. The MIT-BIH database of 48 patient records is utilized for detection and analysis of cardiac arrhythmias. Proposed feature extraction utilizes Daubechies as wavelet function and extracts 21 feature points which include the QRS complex of ECG signal. The Multilayered Probabilistic Neural Network (MPNN) classifier is pro posed as the best-suited classifier for the proposed feature. Total 1700 ECG betas were tested using MPNN classifier and compared with other three classifiers Back Propagation (BPNN), Multilayered Perceptron (MLP) and Support Vector Machine (SVM). The system efficiency and performance have been evaluated using seven types of evaluation criteria: precision (PR), F-Score, positive predictivity (PP), sensitivity (SE), classification error rate (CER) and specificity (SP). The overall system accuracy, using MPNN technique utilizing the proposed feature, obtained is 99.53% whereas using BPNN, MLP and SVM provide 97.94%, 98.53%, and 99%. The processing time using MPNN classifier is only 3 s which show that the proposed techniques not only very accurate and efficient but also very quick.
Keywords: Signal processing ، Artificial intelligence ، Pattern recognition ، Soft computing ، Wavelet transform
مقاله انگلیسی
3 Graph grammars according to the type of input and manipulated data: A survey
گرامر نمودار با توجه به نوع ورودی و دستکاری شده است داده ها: یک مرور-2018
Graph grammars which generate graphs are a generalization of Chomsky grammars that generate strings. During the last decades there has been a remarkable development of graph grammars. Due to their wide diversity of applications, graph grammars have received a particular attention from many scientists and researchers. There has been applications of graph grammars in several areas such as pattern recognition, data base systems, biological developments in organisms, semantics of programming languages, compiler construction, software development environments, etc. In the literature, in some surveys, graph grammars have been studied and classified according to some criteria such as: parallel or sequential applicability of rules, embedding mechanism, type of generated graphs, etc. In addition to this, as data play an important role more and more in different domains, we survey in this paper the vast field of graph grammars by classifying them according to three criteria: the number of manipulated data (single or multiple types), the nature of data (structured or unstructured), and finally the kind of data (images, graphs, patterns, etc.). In particular, we consider that a graph grammar is well defined by five components instead of four, namely: type of generated graphs (TG), a start graph (Z), a set of production rules (P), a set of additional specifications of the rules (A), and the criterion that we additionally consider which is the type of input and manipulated data (TD). This proposed formalism, especially with the added fifth component, may serve to overcome some issues related to Big Data and Cloud Computing domains.
Keywords: Graph grammar ، Type of input and manipulated data ، Type of generated graph ، Big Data ، Cloud computing ، Application
مقاله انگلیسی
4 An Ensemble Signature-based Approach for Performance Diagnosis in Big Data Platform
یک رویکرد مبتنی بر امضای گروه برای تشخیص کارایی در پلت فرم داده های بزرگ-2018
The big data platform always suffers from performance problems due to internal impairments (e.g. software bugs) and external impairments (e.g. resource hog). And the situation is exacerbated by the properties of velocity, variety and volume (3Vs) of big data. To recovery the system from performance anomaly, the first step is to find the root causes. In this paper, we propose a novel signature-based performance diagnosis approach to rapidly pinpoint the root causes of performance problems in big data platforms. The performance diagnosis is formalized as a pattern recognition problem. We leverage Maximum Information Criterion (MIC) to express the invariant relationships amongst the performance metrics in the normal state. Each performance problem occurred in the big data platform is signified by a unique binary vector named signature, which consists of a set of violations of MIC invariants. The signatures of multiple performance problems form a signature database. If the Key Performance Indicator (KPI) of the big data application exhibits model drift, our approach can identify the real culprits by retrieving the root causes which have similar signatures to the current performance problem. Moreover, considering the diversity of big data applications, we establish an ensemble approach to treat each application separately. The experiment evaluations in a controlled big data platform show that our approach can pinpoint the real culprits of performance problems in an average 84% precision and 87% recall when one fault occurs, which is better than several state-of-the-art approaches.
Keywords: performance analysis; data analysis; distributed computing; software performance
مقاله انگلیسی
5 A survey on deep learning for big data
مروری بر یادگیری عمیق برای داده های بزرگ-2018
Deep learning, as one of the most currently remarkable machine learning techniques, has achieved great success in many applications such as image analysis, speech recognition and text understanding. It uses supervised and unsupervised strategies to learn multi-level representations and features in hierarchical architectures for the tasks of classification and pattern recognition. Recent development in sensor networks and communication technologies has enabled the collection of big data. Although big data provides great opportunities for a broad of areas including e-commerce, industrial control and smart medical, it poses many challenging issues on data mining and information processing due to its characteristics of large volume, large variety, large velocity and large veracity. In the past few years, deep learning has played an important role in big data analytic solutions. In this paper, we review the emerging researches of deep learning models for big data feature learning. Furthermore, we point out the remaining challenges of big data deep learning and discuss the future topics.
Keywords: Deep learning , Big data , Stacked auto-encoders , Deep belief networks , Convolutional neural networks , Recurrent neural networks
مقاله انگلیسی
6 مروری بر مورد یادگیری عمیق برای داده های بزرگ
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 12 - تعداد صفحات فایل doc فارسی: 44
یادگیری عمیق، به عنوان یکی از مهم ترین تکنیک های یادگیری ماشینی، موفقیت های زیادی در بسیاری از برنامه های کاربردی مانند تحلیل تصویر، تشخیص گفتار و درک متن بدست اورده است . انها از استراتژی های نظارت شده و بی نظیر برای یادگیری چندین سطح و ویژگی های معماری سلسله مراتبی برای وظایف طبقه بندی و تشخیص الگو استفاده می کنند. پیشرفت های اخیر در شبکه های حسگر و فناوری های ارتباطی، قادر به جمع آوری داده های بزرگ می باشد. اگر چه داده های بزرگ فرصت های خوبی برای بسیاری از زمینه ها از جمله تجارت الکترونیک، کنترل صنعتی و پزشکی هوشمند فراهم می اورند، اما در زمینه داده کاوی و پردازش اطلاعات به دلیل ویژگی های حجم زیاد، انواع مختلف، سرعت زیاد و حقیقت بزرگ، چالش های فراوانی را به همراه خواهند داشت. در چند سال گذشته، یادگیری عمیق در راه حل های تحلیلی داده های بزرگ نقش مهمی را ایفا کرده است. در این مقاله، تحقیقات انجام شده درباره مدل های یادگیری عمیق برای یادگیری ویژگی های بزرگ داده ها در اینده را مرور می کنیم. علاوه بر این، ما با توجه به چالش های باقیمانده به یادگیری عمیق داده های بزرگ و بحث در مورد موضوعات آینده اشاره می کنیم.
کلمات کلیدی: یادگیری عمیق | داده های بزرگ | رمزگذاران خودکار انباشته شده | شبکه های اعتقادی عمیق | شبکه های عصبی کانولوشن | شبکه عصبی مکرر
مقاله ترجمه شده
7 A Novel Approach for the Prediction of Treadmill Test in Cardiology using Data Mining Algorithms implemented as a Mobile Application
یک رویکرد جدید برای پیش بینی تست تردمیل در قلب و عروق با استفاده از الگوریتم های داده کاوی به عنوان یک برنامه کاربردی موبایل-2018
Objective: To develop a mobile app called “TMT Predict” to predict the results of Treadmill Test(TMT), using Data Mining techniques applied to a clinical dataset using minimal clinical attributes. To prospectively test the results of the app in realtime to TMT and correlate with Coronary Angiogram results. Methods: In this study, instead of statistics, Data mining approach has been utilised for the prediction of the results of TMT by analysing the clinical records of 1000 Cardiac patients. This research employed the Decision Tree algorithm, a new modified version of K-Nearest Neighbour (KNN) algorithm, K-Sorting & Searching (KSS). Furthermore, Curve Fitting Mathematical Technique was used to improve the Accuracy. The system used six clinical attributes such as Age, Gender, BMI, Dyslipidemia, Diabetes mellitus and Systemic hypertension. An Android app called “TMT Predict” was developed, wherein all three inputs were combined and analysed. The final result is based on the dominating values of the three results. The App was further tested prospectively in 300 patients to predict the results of TMT and correlate with Coronary angiography. Results: The accuracy of predicting the result of a TMT using Data Mining algorithms, Decision Tree and K Sorting & Searching (KSS) were 73% and 78% respectively. The mathematical method Curve Fitting predicted with 82% Accuracy. The accuracy of the mobile app “TMT Predict”, improved to 84%. Age-wise analysis of the results show that the accuracy of the app dips when the age is more than 60 years indicating that there may be other factors like retirement stress that may have to be included. This gives scope for future research also. In the prospective study, the Positive and Negative predictive values of the App for the results of TMT and Coronary Angiogram were found to be 40% and 83% for TMT and 52% and 80% for Coronary Angiogram. The Negative Predictive value of the app was high, indicating that it is a good screening tool to rule out CAHD. Conclusion: “TMT Predict” is a simple user-friendly android app, which uses six simple clinical attributes to predict the results of TMT. The app has a high negative predictive value indicating that it is a useful tool to rule out CAHD. The “TMT Predict” could be a future digital replacement for the manual TMTas an initial screening tool to rule out CAHD.
Keywords: Cardiology ، Treadmill test (TMT) ، Pattern recognition ، K-Nearest neighbour (KNN) ، K-Sorting & Searching (KSS) ، Curve fitting
مقاله انگلیسی
8 Employing a data mining approach for identification of mobile opinion leaders and their content usage patterns in large telecommunications datasets
استفاده از روش داده کاوی برای شناسایی نظر رهبران تلفن همراه و الگوهای استفاده از محتوای آنها در مجموعه داده های بزرگ مخابراتی -2018
Recent technological advances in communication infrastructure, especially those in the realm of mobile services, have drastically impacted how people interact socially. The more ubiquitous and convenient mobile approach has steered away users from the traditional computer-mediated systems. As the mobile trend continues, un derstanding usage behavior patterns of its users becomes critical to harness the power of this new technology. One particular user group, opinion leaders deemed tremendously influential on the usage behavior of other users, is the main focus of this study. Existing literature on the mobile usage pattern of opinion leaders is limited to theoretical rather than empirical studies. This research attempts to bridge the gap. Drawing from one of the largest Taiwanese telecommunications databases, we try to identify mobile opinion leaders and further cluster their mobile usage patterns by mining the actual data. This study exploits a combination of techniques, including statistics, data mining, and pattern recognition, in our data analysis. Four main characteristics and seven usage patterns of mobile opinion leaders were identified. There are two main contributions of this work. The first contribution is the application of opinion leadership theories applied in the traditional marketplace into mobile services based on a big data system; the second offers a taxonomy to logically analyze each pattern of mobile content usage behavior gathered from mining the data to provide better planning blueprint for future mobile resource consumption.
Keywords: Data mining ، Mobile service ، Mobile opinion leader ، Web content usage patterns
مقاله انگلیسی
9 مروری بر یادگیری عمیق برای داده های بزرگ
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 12 - تعداد صفحات فایل doc فارسی: 44
یادگیری عمیق، به عنوان یکی از مهم ترین تکنیک های یادگیری ماشینی، موفقیت های زیادی در بسیاری از برنامه های کاربردی مانند تحلیل تصویر، تشخیص گفتار و درک متن بدست اورده است . انها از استراتژی های نظارت شده و بی نظیر برای یادگیری چندین سطح و ویژگی های معماری سلسله مراتبی برای وظایف طبقه بندی و تشخیص الگو استفاده می کنند. پیشرفت های اخیر در شبکه های حسگر و فناوری های ارتباطی، قادر به جمع آوری داده های بزرگ می باشد. اگر چه داده های بزرگ فرصت های خوبی برای بسیاری از زمینه ها از جمله تجارت الکترونیک، کنترل صنعتی و پزشکی هوشمند فراهم می اورند، اما در زمینه داده کاوی و پردازش اطلاعات به دلیل ویژگی های حجم زیاد، انواع مختلف، سرعت زیاد و حقیقت بزرگ، چالش های فراوانی را به همراه خواهند داشت. در چند سال گذشته، یادگیری عمیق در راه حل های تحلیلی داده های بزرگ نقش مهمی را ایفا کرده است. در این مقاله، تحقیقات انجام شده درباره مدل های یادگیری عمیق برای یادگیری ویژگی های بزرگ داده ها در اینده را مرور می کنیم. علاوه بر این، ما با توجه به چالش های باقیمانده به یادگیری عمیق داده های بزرگ و بحث در مورد موضوعات آینده اشاره می کنیم. Furthermore, we point out the remaining challenges of big data deep learning and discuss the future topics.
کلمات کلیدی: یادگیری عمیق | داده های بزرگ | رمزگذاران خودکار انباشته شده | شبکه های اعتقادی عمیق | شبکه های عصبی کانولوشن | شبکه عصبی مرتب
مقاله ترجمه شده
10 Multiagent-consensus-MapReduce-based attribute reduction using co-evolutionary quantum PSO for big data applications
کاهش ویژگی های مبتنی بر Multiagent-Consensus-MapReduce با استفاده ازکوانتومی تکاملی PSO برای برنامه های داده های بزرگ-2018
The attribute reduction for big data applications has become an urgent challenge in pattern recognition, machine learning and data mining. In this paper, we introduce the multi-agent consensus MapReduce optimization model and co-evolutionary quantum PSO with self-adaptive memeplexes for designing the attribute reduction method, and propose a multiagent-consensus-MapReduce-based attribute reduction algorithm (MCMAR). Firstly, the co-evolutionary quantum PSO with self-adaptive memeplexes is designed for grouping particles into different memeplexes, which aims to explore the search space and locate the global best region during the attribute reduction of big datasets. Secondly, the four layers neigh borhood radius framework with compensatory scheme is constructed to partition big attribute sets by exploiting the interdependency among multiple-relevant-attribute sets. Thirdly, a novel multi-agent con sensus MapReduce optimization model is adopted to perform the multiple-relevance-attribute reduction, in which five kinds of agents are used to conduct the ensemble co-evolutionary optimization. So the uniform reduction framework of different agents’ co-evolutionary game under the bounded rationality is further refined. Fourthly, the approximation MapReduce parallelism mechanism is permitted to formal ize to the multi-agent co-evolutionary consensus structure, interaction and adaptation, which enhances different agents to share their solutions. Finally, extensive experimental studies substantiate the effective ness and accuracy of MCMAR on some well-known benchmark datasets. Moreover, successful applications in big medical datasets are expected to dramatically scaling up MCMAR for complex infant brain MRI in terms of efficiency and feasibility.
Keywords: Multi-agent consensus MapReduce model ، Co-evolutionary quantum PSO ، Self-adaptive memeplexes ، Neighborhood radius with ompensatory ، scheme ، Ensemble co-evolutionary optimization of ، attribute reduction
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی