دانلود و نمایش مقالات مرتبط با QoS::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی
نتیجه جستجو - QoS

تعداد مقالات یافته شده: 55
ردیف عنوان نوع
1 الگوریتم تکاملی چند هدفه مبتنی بر شبکه عصبی برای زمانبندی گردش کار پویا در محاسبات ابری
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 16 - تعداد صفحات فایل doc فارسی: 45
زمانبندی گردشکار یک موضوع پژوهشی است که به طور گسترده در محاسبات ابری مورد مطالعه قرار گرفته است و از منابع ابری برای کارهای گردش کار استفاده می¬شود و برای این منظور اهداف مشخص شده در QoS را لحاظ می¬کند. در این مقاله، مسئله زمانبندی گردش کار پویا را به عنوان یک مسئله بهینه سازی چند هدفه پویا (DMOP) مدل می¬کنیم که در آن منبع پویایی سازی بر اساس خرابی منابع و تعداد اهداف است که ممکن است با گذر زمان تغییر کنند. خطاهای نرم افزاری و یا نقص سخت افزاری ممکن است باعث ایجاد پویایی نوع اول شوند. از سوی دیگر مواجهه با سناریوهای زندگی واقعی در محاسبات ابری ممکن است تعداد اهداف را در طی اجرای گردش کار تغییر دهد. در این مطالعه یک الگوریتم تکاملی چند هدفه پویا مبتنی بر پیش بینی را به نام الگوریتم NN-DNSGA-II ارائه می¬دهیم و برای این منظور شبکه عصبی مصنوعی را با الگوریتم NGSA-II ترکیب می¬کنیم. علاوه بر این پنج الگوریتم پویای مبتنی بر غیرپیش بینی از ادبیات موضوعی برای مسئله زمانبندی گردش کار پویا ارائه می¬شوند. راه¬حل¬های زمانبندی با در نظر گرفتن شش هدف یافت می¬شوند: حداقل سازی هزینه ساخت، انرژی و درجه عدم تعادل و حداکثر سازی قابلیت اطمینان و کاربرد. مطالعات تجربی مبتنی بر کاربردهای دنیای واقعی از سیستم مدیریت گردش کار Pegasus نشان می¬دهد که الگوریتم NN-DNSGA-II ما به طور قابل توجهی از الگوریتم¬های جایگزین خود در بیشتر موارد بهتر کار می¬کند با توجه به معیارهایی که برای DMOP با مورد واقعی پارتو بهینه در نظر گرفته می¬شود از جمله تعداد راه¬حل¬های غیرغالب، فاصله¬گذاری Schott و شاخص Hypervolume.
مقاله ترجمه شده
2 Energy-aware resource management for uplink non-orthogonal multiple access: Multi-agent deep reinforcement learning
مدیریت منابع آگاه در زمینه انرژی برای دسترسی چندگانه غیر متعاملی به هم پیوسته: یادگیری تقویت عمیق چند عامل-2020
Non-orthogonal multiple access (NOMA) is one of the promising technologies to meet the huge access demand and the high data rate requirements of the next generation networks. In this paper, we investigate the joint subchannel assignment and power allocation problem in an uplink multi-user NOMA system to maximize the energy efficiency (EE) while ensuring the quality-of-service (QoS) of all users. Different from conventional model-based resource allocation methods, we propose two deep reinforcement learning (DRL) based frameworks to solve this non-convex and dynamic optimization problem, referred to as discrete DRL based resource allocation (DDRA) framework and continuous DRL based resource allocation (CDRA) framework. Specifically, for the DDRA framework, we use a deep Q network (DQN) to output the optimum subchannel assignment policy, and design a distributed and discretized multi-DQN based network to allocate the corresponding transmit power of all users. For the CDRA framework, we design a joint DQN and deep deterministic policy gradient (DDPG) based network to generate the optimal subchannel assignment and power allocation policy. The entire resource allocation policies of these two frameworks are adjusted by updating the weights of their neural networks according to feedback of the system. Numerical results show that the proposed DRLbased resource allocation frameworks can significantly improve the EE of the whole NOMA system compared with other approaches. The proposed DRL based frameworks can provide good performance in various moving speed scenarios through adjusting learning parameters.
Keywords: Non-orthogonal multiple access | Resource allocation | Energy efficiency | Deep reinforcement learning | Deep deterministic policy gradient
مقاله انگلیسی
3 به سوی تقسیم بندی شبکه 5G برای شبکه های ادهاک خودرویی: یک رویکرد انتها به انتها
سال انتشار: 2020 - تعداد صفحات فایل pdf انگلیسی: 7 - تعداد صفحات فایل doc فارسی: 16
شبکه های 5G نه تنها از افزایش نرخ داده ها پشتیبانی می کنند، بکه همچنین می بایست زیرساخت مشترکی را فراهم کنند که براساس آن سرویس های جدید همراه با نیازمندی های بسیار متفاوت کیفیت سرویس (QoS) شبکه با تاخیر کمتر ارائه شود. به طور دقیق تر، کاربردهای شبکه های خودرویی چند منظوره (VANET) که اساساً گرایش آن ها به مسائل ایمنی و سرگرمی است (مانند پخش ویدیویی و مرورگر وب) در حال افزایش است. بیشتر این کاربردها دارای محدودیت های جدی از نظر تاخیر در حد چند میلی ثانیه هستند و نیاز به اطمینان پذیری بالایی دارند. پلتفورم نسل پنجم برای بررسی چنین نیازهایی نیازمند ایجاد شبکه های مجازی برنامه پذیر و راهکارهای مختلف ترافیکی همانند تقسیم بندی (برش) شبکه است. به این منظور در این مقاله یک مکانیزم تقسیم بندی پویا و برنامه پذیر انتها به انتها در شبکه LTE مبتنی بر M-CORD پیشنهاد می دهیم. یکی از ویژگی های کلیدی M-CORD که مکانیزم پیشنهاد تقسیم بندی شبکه از آن استفاده می کند، EPC مجازی است که سفارشی سازی و اصلاح را امکان پذیر می سازد. M-CORD کارکرد ضروری را برای برنامه ریزی تعاریف تقسیم بندی فراهم می کند که در آن مکانیزم پیشنهادی به طور کامل از رویکرد تعریف شده نرم افزاری خود پیروی می کند. علاوه بر این، ما نشان می دهیم که چگونه دستگاه ها انتهایی قرار گرفته در بخش های مختلف براساس QoS های متفاوت براساس نوع کاربر انتهایی تخصیص داده می شوند. این نتایج نشان می دهند که مکانیزم پیشنهادی تقسیم بندی شبکه بخش های مناسب را انتخاب می کند و منابع را به کاربران براساس نیازها و نوع سرویس آن ها اختصاص می دهد.
کلمات کلیدی: تقسیم بندی شبکه | نسل پنجم (5G) | M-CORD | LTE | NSSF | VANET
مقاله ترجمه شده
4 QoS provisioning for various types of deadline-constrained bulk data transfers between data centers
تامین کیفیت سرویس برای انواع مختلف انتقال داده های فشرده محدود بین مراکز داده-2020
An increasing number of applications in scientific and other domains have moved or are in active transition to clouds, and the demand for big data transfers between geographically distributed cloudbased data centers is rapidly growing. Many modern backbone networks leverage logically centralized controllers based on software-defined networking (SDN) to provide advance bandwidth reservation for data transfer requests. How to fully utilize the bandwidth resources of the links connecting data centers with guaranteed quality of service for each user request is an important problem for cloud service providers. Most existing work focuses on bandwidth scheduling for a single request for data transfer or multiple requests using the same service model. In this work, we construct rigorous cost models to quantify user satisfaction degree, and formulate a generic problem of bandwidth scheduling for multiple deadline-constrained data transfer requests of different types to maximize the request scheduling success ratio while minimizing the data transfer completion time of each request. We prove this problem to be not only NP-complete but also non-approximable, and hence design a heuristic algorithm. For performance evaluation, we establish a proof-of-concept emulated SDN testbed and also generate large-scale simulation networks. Both experimental and simulation results show that the proposed scheduling scheme significantly outperforms existing methods in terms of user satisfaction degree and scheduling success ratio.
Keywords: Big data | Data center | High-performance networks | Software-defined networking | Bandwidth scheduling
مقاله انگلیسی
5 Deep Learning Clusters in the Cognitive Packet Network
خوشه های یادگیری عمیق در شبکه بسته های شناختی-2019
The Cognitive Packet Network (CPN) bases its routing decisions and flow control on the Random Neural Network (RNN) Reinforcement Learning algorithm; this paper proposes the addition of a Deep Learning (DL) Cluster management structure to the CPN for Quality of Service metrics (Delay Loss and Bandwidth), Cyber Security keys (User, Packet and Node) and Management decisions (QoS, Cyber and CEO). The RNN already models how neurons transmit information using positive and negative impulsive signals whereas the proposed additional Deep Learning structure emulates the way the brain learns and takes decisions; this paper presents a brain model as the combination of both learning algorithms, RNN and DL. The pro- posed model has been simulated under different network sizes and scenarios and it has been validated against the CPN itself without DL clusters. The simulation results are promising; the presented CPN with DL clusters as a mechanism to transmit, learn and make packet routing decisions is a step closer to em- ulate the way the brain transmits information, learns the environment and takes decisions.
Keywords: Random Neural Network | Deep Learning Clusters | Cognitive Packet Network | QoS | Cybersecurity | Routing
مقاله انگلیسی
6 A Joint Power Efficient Server and Network Consolidation approach for virtualized data centers
یک سرور توانی کارآمد مشترک و دیدگاه یکپارچه سازی شبکه برای مراکز داده ای مجازی-2018
Cloud computing and virtualization are enabling technologies for designing energy-aware resource management mechanisms in virtualized data centers. Indeed, one of the main challenges of big data centers is to decrease the power consumption, both to cut costs and to reduce the environmental impact. To this extent, Virtual Machine (VM) consolidation is often used to smartly reallocate the VMs with the objective of reducing the power consumption, by exploiting the VM live migration. The consolidation problem consists in finding the set of migrations that allow to keep turned on the minimum number of servers needed to host all the VMs. However, most of the proposed consolidation approaches do not consider the network related consumption, which represents about 10–20% of the total energy consumed by IT equipment in real data centers. This paper proposes a novel joint server and network consolidation model that takes into account the power efficiency of both the switches forwarding the traffic and the servers hosting the VMs. It powers down switch ports and routes traffic along the most energy efficient path towards the least energy consuming server under QoS constraints. Since the model is complex, a fast Simulated Annealing based Resource Consolidation algorithm (SARC) is proposed. Our numerical results demonstrate that our approach is able to save on average 50% of the network related power consumption compared to a network unaware consolidation.
keywords: Cloud| Virtualization| Power| Green computing| Simulated annealing
مقاله انگلیسی
7 Quality of service in delay tolerant networks: A survey
کیفیت خدمات در شبکه های مقاوم تاخیری: یک بررسی-2018
Delay tolerant networks (DTNs) are characterized by the absence of the end-to-end path due to intermittent connectivity among the nodes. Such networks are potentially applicable in the challenging scenarios, e.g. interplanetary communication, post-disaster environment, where traditional communication infrastructure is partially or fully absent. Each application requires some quality of service (QoS) guarantees for the traffic flow. QoS support cannot be provided to a network without QoS provisioning. However, QoS provisioning in a DTN is more difficult task than traditional networks, because of its inherent characteristics. There exist various issues which affect QoS in DTNs. In this paper, we explore the issues that influence QoS in DTNs. Subsequently, we analyze the effects of the issues on the QoS in terms of delivery ratio, packet drop etc. We also review various QoS management solutions in DTNs. The schemes on the QoS issues are classified based on their underlying approaches and key features. The paper is concluded with a brief discussion on some of the open research issues regarding QoS in DTNs.
keywords: Delay tolerant networks| Quality of service| QoS issues| QoS management solutions
مقاله انگلیسی
8 Improving the Effectiveness of Burst Buffers for Big Data Processing in HPC Systems with Eley
بهبود اثربخشی بافرها پشت سر هم برای پردازش داده های بزرگ در سیستم های HPC با Eley-2018
Burst Buffer is an effective solution for reducing the data transfer time and the I/O interference in HPC systems. Extending Burst Buffers (BBs) to handle Big Data applications is challenging because BBs must account for the large data inputs of Big Data applications and the Quality-of-Service (QoS) of HPC applications—which are considered as first-class citizens in HPC systems. Existing BBs focus on only intermediate data of Big Data applications and incur a high performance degradation of both Big Data and HPC applications. We present Eley, a burst buffer solution that helps to accelerate the performance of Big Data applications while guaranteeing the QoS of HPC applications. To achieve this goal, Eley embraces interference-aware prefetching technique that makes reading data input faster while introducing low interference for HPC applications. Evaluations using a wide range of Big Data and HPC applications demonstrate that Eley improves the performance of Big Data applications by up to 30% compared to existing BBs while maintaining the QoS of HPC applications.
Keywords: HPC ، MapReduce ، Big data ، Parallel file systems ، Burst buffers ، Interference ، Prefetch
مقاله انگلیسی
9 تحلیل کارایی سیستم‌های صف‌ اولویت‌ با استفاده از شبکه‌های پتری بهنگام
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 4 - تعداد صفحات فایل doc فارسی: 13
در این مقاله نتایج تحقیقات و تحلیل کارایی سیستم صف اولویت‌ (PQS) ارائه شده است که از کیفیت سرویس (QOS) پشتیبانی می‌کند. مدل‌های صف‌ اولویت‌ که از سه کلاس ترافیکی (اولویت بالا، متوسط و کم) در معماری 5-3-1 پشتیبانی می‌کنند، مورد طراحی و آزمایش واقع شدند. ارزیابی کارایی سیستم‌های آزمایش شده با استفاده از شبکه‌های پتری بهنگام(زمانبندی شده) انجام شده است. استفاده از ابزارهای شبیه‌سازی در قالب شبکه‌های پتری (PN) برای ارزیابی و اعتبارسنجی زمان انتظار، ساز و کارهای صف‌بندی و شدت ترافیک با استفاده از الگوریتم صف‌بندی مجاز است. ما در این مقاله به این نتیجه خواهیم رسید که مدل‌های شبکه‌های پتری زماندار می‌توانند به طور موثری در مدل‌سازی و تحلیل کارایی سیستم‌های صف‌بندی اولویت مورد استفاده قرار بگیرند.
کلمات کلیدی: تحلیل کارایی | شبکه‌های پتری | سیستم‌های صف‌ اولویت‌ | کیفیت سرویس‌.
مقاله ترجمه شده
10 تقویت میان افزار بر مبنی کاربردهای اینترنت اشیا از طریق مکانیسم مدیریت زمان اجرای قابل جابجایی کیفیت سرویس کاربرد برای یک M2M سازگار با میان افزار IOT
سال انتشار: 2018 - تعداد صفحات فایل pdf انگلیسی: 9 - تعداد صفحات فایل doc فارسی: 22
در سال های اخیر؛ در مخابرات و شبکه های کامپیوتری از طریق مجازی سازی عملکرد شبکه (NFV) و شبکه های تعریف شده نرم افزار (SDN)، مفاهیم و تکنولوژی های جدیدی را شاهد بوده اید. SDN، به برنامه های کاربردی برای کنترل شبکه اجازه می دهد، و NFV، اجازه می دهد تا توزیع توابع شبکه در محیط های مجازی، امکان پذیر شوند، اینها دو نمونه ای هستند که به طور فزاینده ای برای اینترنت اشیا (IoT) استفاده می شود. این اینترنت (IoT) وعده را به ارمغان می آورد که در چند سال آینده میلیاردها دستگاه را به هم متصل کند، و چالش های علمی متعددی را به ویژه در مورد رضایت از کیفیت خدمات (QoS) مورد نیاز برنامه های کاربردی IOT افزایش دهد. به منظور حل این مشکل، ما دو چالش را با توجه به QoS شناسایی کرده ایم: شبکه های متقاطع و نهادهای میانجی که اجازه می دهد تا برنامه با دستگاه های IoT ارتباط برقرار کند. در این مقاله؛ در ابتدا یک چشم انداز نواورانه از یک "عملکرد شبکه" با توجه به محیط توسعه و استقرار آن ارائه می کنیم. سپس، رویکرد کلی از یک راه حل که شامل گسترش پویا، مستقل و یکپارچه از مکانیزم های مدیریت QoS است، را توصیف می کنیم. همچنین مقررات اجرای چنین رویکردی را توصیف می کنیم. در نهایت؛ یک مکانیزم هدایتگر ارائه می کنیم، که به عنوان یک تابع شبکه اجرا می شود، و اجازه کنترل یکپارچه مسیر داده ها از یک ترافیک میان افزار مشخص را می دهد. این مکانیسم از طریق استفاده مربوط به حمل و نقل خودرو ارزیابی می شود.
کلمات کلیدی: اینترنت اشیا | کیفیت سرویس | میان افزار | چارچوب نمونه | گسترش پویا | عملکرد شبکه | محاسبات خودکار.
مقاله ترجمه شده
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi