دانلود و نمایش مقالات مرتبط با Relational data::صفحه 1
دانلود بهترین مقالات isi همراه با ترجمه فارسی

با سلام خدمت کاربران عزیز، به اطلاع می رساند ترجمه مقالاتی که سال انتشار آن ها زیر 2008 می باشد رایگان بوده و میتوانید با وارد شدن در صفحه جزییات مقاله به رایگان ترجمه را دانلود نمایید.

نتیجه جستجو - Relational data

تعداد مقالات یافته شده: 34
ردیف عنوان نوع
1 A systematic quality assurance framework for the upgrade of radiation oncology information systems
یک چارچوب تضمین کیفیت سیستماتیک برای ارتقاء سیستم های اطلاعاتی آنکولوژی پرتونگاری-2020
In spite of its importance, no systematic and comprehensive quality assurance (QA) program for radiation oncology information systems (ROIS) to verify clinical and treatment data integrity and mitigate against data errors/corruption and/or data loss risks is available. Based on data organization, format and purpose, data in ROISs falls into five different categories: (1) the ROIS relational database and associated files; (2) the ROIS DICOM data stream; (3) treatment machine beam data and machine configuration data; (4) electronic medical record (EMR) documents; and (5) user-generated clinical and treatment reports from the ROIS. For each data category, this framework proposes a corresponding data QA strategy to very data integrity. This approach verified every bit of data in the ROIS, including billions of data records in the ROIS SQL database, tens of millions of ROIS database-associated files, tens of thousands of DICOM data files for a group of selected patients, almost half a million EMR documents, and tens of thousands of machine configuration files and beam data files. The framework has been validated through intentional modifications with test patient data. Despite the ‘big data’ nature of ROIS, the multiprocess and multithread nature of our QA tools enabled the whole ROIS data QA process to be completed within hours without clinical interruptions. The QA framework suggested in this study proved to be robust, efficient and comprehensive without labor-intensive manual checks and has been implemented for our routine ROIS QA and ROIS upgrades.
Keywords: Quality assurance | Radiation oncology information system | Clinical data integrity and safety | Radiation oncology data management | Integrated oncology system
مقاله انگلیسی
2 Mortadelo: Automatic generation of NoSQL stores from platform-independent data models
Mortadelo: تولید خودکار فروشگاههای NoSQL از مدلهای داده مستقل از پلتفرم-2020
In the last decade, several NoSQL systems have emerged as a response to the scalability problems manifested by classical relational databases when used in Big Data contexts. These NoSQL systems appeared first as physical-level solutions, initially lacking any design methodologies. After this initial batch of systems, several design methodologies for NoSQL have been recently created. Nevertheless, most of these methodologies target just one NoSQL paradigm. In addition, as each methodology uses a different conceptual modeling approach, NoSQL database designers would need to remake conceptual models as they switch from one NoSQL paradigm to another. Moreover, most of these design processes provide just a set of design heuristics and guidelines that database designers need to apply manually, which can be a time-consuming and error-prone process. To overcome these limitations, this article presents Mortadelo, a model-driven NoSQL database design process where, from a high-level conceptual model, independent of any specific NoSQL paradigm, an implementation for a concrete NoSQL database system can be automatically generated. Moreover, this database generation process can be customized, so that some design trade-offs can be managed differently according to each context needs. We evaluated Mortadelo’s capabilities by generating database implementations for several typical NoSQL case studies. In these cases, Mortadelo was able to generate implementations for the Cassandra and MongoDB NoSQL systems from the same conceptual data model. These implementations were similar to the ones generated by design methodologies specifically developed for a single paradigm. Therefore, design quality is not sacrificed by our approach in favor of generality.
Keywords: NoSQL | Database design | Data modeling | Model-driven engineering | Column family stores | Document stores
مقاله انگلیسی
3 مروری بر تجمیع دستگاه های مدل سازی اطلاعات ساختمانی (BIM) و اینترنت اشیاء (IoT): وضعیت کنونی و روند آینده
سال انتشار: 2019 - تعداد صفحات فایل pdf انگلیسی: 13 - تعداد صفحات فایل doc فارسی: 56
تجمیع مدل سازی اطلاعات ساختمانی (BIM) با داده های زمان واقعی(بلادرنگ) دستگاه های اینترنت اشیاء (IoT)، نمونه قوی را برای بهبود ساخت وساز و بهره وری عملیاتی ارائه می دهد. اتصال جریان-های داده های زمان واقعی که بر گرفته از مجموعه هایی از شبکه های حسگرِ اینترنت اشیاء (که این جریان های داده ای، به سرعت در حال گسترش هستند) می باشند، با مدل های باکیفیت BIM، در کاربردهای متعددی قابل استفاده می باشد. با این حال، پژوهش در زمینه ی تجمیع BIM و IOT هنوز در مراحل اولیه ی خود قرار دارد و نیاز است تا وضعیت فعلی تجمیع دستگاه های BIM و IoT درک شود. این مقاله با هدف شناسایی زمینه های کاربردی نوظهور و شناسایی الگوهای طراحی رایج در رویکردی که مخالف با تجمیع دستگاه BIM-IoT می باشد، مرور جامعی در این زمینه انجام می دهد و به بررسی محدودیت های حاضر و پیش بینی مسیرهای تحقیقاتی آینده می پردازد. در این مقاله، در مجموع، 97 مقاله از 14 مجله مربوط به AEC و پایگاه داده های موجود در صنایع دیگر (در دهه گذشته)، مورد بررسی قرار گرفتند. چندین حوزه ی رایج در این زمینه تحت عناوین عملیات ساخت-وساز و نظارت، مدیریت ایمنی و بهداشت، لجستیک و مدیریت ساختمان، و مدیریت تسهیلات شناسایی شدند. نویسندگان، 5 روش تجمیع را همراه با ذکر توضیحات، نمونه ها و بحث های مربوط به آنها به طور خلاصه بیان کرده اند. این روش های تجمیع از ابزارهایی همچون واسط های برنامه نویسی BIM، پایگاه داده های رابطه ای، تبدیل داده های BIM به پایگاه داده های رابطه ای با استفاده از طرح داده های جدید، ایجاد زبان پرس وجوی جدید، فناوری های وب معنایی و رویکردهای ترکیبی، استفاده می کنند. براساس محدودیت های مشاهده شده، با تمرکز بر الگوهای معماری سرویس گرا (SOA) و راهبردهای مبتنی بر وب برای ادغام BIM و IoT، ایجاد استانداردهایی برای تجمیع و مدیریت اطلاعات، حل مسئله همکاری و محاسبات ابری، مسیرهای برجسته ای برای تحقیقات آینده پیشنهاد شده است.
کلمه های کلیدی: مدل سازی اطلاعات ساختمانی (BIM) | دستگاه اینترنت اشیاء (IoT) | حسگرها | ساختمان هوشمند | شهر هوشمند | محیط ساخته شده هوشمند | تجمیع.
مقاله ترجمه شده
4 Clustering of multi-view relational data based on particle swarm optimization
خوشه بندی داده های رابطه ای چند منظوره بر اساس بهینه سازی ازدحام ذرات-2019
Clustering of multi-view data has received increasing attention since it explores multiple views of data sets aiming at improving clustering accuracy. Particle Swarm Optimization (PSO) is a well-known population-based meta-heuristic successfully used in cluster analysis. This paper introduces two hybrid clustering methods for multi-view relational data. These hybrid methods combine PSO and hard clus- tering algorithms based on multiple dissimilarity matrices. These methods take advantage of the global convergence ability of PSO and the local exploitation of hard clustering algorithms in the position up- date step, aiming to improve the balance between exploitation and exploration processes. Moreover, the paper provides adapted versions of 11 fitness functions suitable for vector data aiming at dealing with multi-view relational data. Two performance criteria were used to evaluate the clustering quality using the two proposed methods over eleven real-world data sets including image and document data sets. Among new findings, it was observed that the top three fitness functions are Silhouette index, Xu index and Intra-cluster homogeneity. The performance of the proposed algorithms was compared with previ- ous single and multi-view relational clustering algorithms. The results show that the proposed methods significantly outperformed the other algorithms in the majority of cases. The results reinforce the im- portance of the application of techniques such as PSO-based clustering algorithms in the field of expert systems and machine learning. Such application enhances classification accuracy and cluster compactness. Besides, the proposed algorithms can be useful tools in content-based image retrieval systems, providing good categorizations and automatically learning relevance weights for each cluster of images and sets of views.
Keywords: PSO | Cluster analysis | Multi-view clustering | Relational data
مقاله انگلیسی
5 Big Data Model Simulation on a Graph Database for Surveillance in Wireless Multimedia Sensor Networks
شبیه سازی مدل داده های بزرگ بر روی یک پایگاه داده گراف برای نظارت بر شبکه های حسگر چندرسانه ای بیسیم-2018
Sensors are present in various forms all around the world such as mobile phones, surveillance cameras, smart televisions, intelligent refrigerators and blood pressure monitors. Usually, most of the sensors are a part of some other system with similar sensors that compose a network. One of such networks is composed of millions of sensors connected to the Internet which is called Internet of Things (IoT). With the advances in wireless communication technologies, multimedia sensors and their networks are expected to be major components in IoT. Many studies have already been done on wireless multimedia sensor networks in diverse domains like fire detection, city surveillance, early warning systems, etc. All those applications position sensor nodes and collect their data for a long time period with real-time data flow, which is considered as big data. Big data may be structured or unstructured and needs to be stored for further processing and analyzing. Analyzing multimedia big data is a challenging task requiring a high-level modeling to efficiently extract valuable information/knowledge from data. In this study, we propose a big database model based on graph database model for handling data generated by wireless multimedia sensor networks. We introduce a simulator to generate synthetic data and store and query big data using graph model as a big database. For this purpose, we evaluate the well-known graph-based NoSQL databases, Neo4j and OrientDB, and a relational database, MySQL. We have run a number of query experiments on our implemented simulator to show that which database system(s) for surveillance in wireless multimedia sensor networks is efficient and scalable.
Keywords: Internet of things (IoT) ، Big graph databases ، NoSQL databases ، Wireless multimedia sensor networks ، Simulator
مقاله انگلیسی
6 Using multi-relational data mining to discriminate blended therapy efficiency on patients based on log data
استفاده از داده کاوی چند ارتباطی به منظور تشخیص راندمان درمان ترکیبی در بیماران بر اساس ردپای داده ها-2018
Clinical trials of blended Internet-based treatments deliver a wealth of data from various sources, such as self-report questionnaires, diagnostic interviews, treatment platform log files and Ecological Momentary Assessments (EMA). Mining these complex data for clinically relevant patterns is a daunting task for which no definitive best method exists. In this paper, we explore the expressive power of the multi-relational Inductive Logic Programming (ILP) data mining approach, using combined trial data of the EU E-COMPARED depression trial. Methods: We explored the capability of ILP to handle and combine (implicit) multiple relationships in the E-COMPARED data. This data set has the following features that favor ILP analysis: 1) Time reasoning is involved; 2) there is a reasonable amount of explicit useful relations to be analyzed; 3) ILP is capable of building comprehensible models that might be perceived as putative explanations by domain experts; 4) both numerical and statistical models may coexist within ILP models if necessary. In our analyses, we focused on scores of the PHQ-8 self-report questionnaire (which taps depressive symptom severity), and on EMA of mood and various other clinically relevant factors. Both measures were administered during treatment, which lasted between 9 to 16 weeks. Results: E-COMPARED trial data revealed different individual improvement patterns: PHQ-8 scores suggested that some individuals improved quickly during the first weeks of the treatment, while others improved at a (much) slower pace, or not at all. Combining self-reported Ecological Momentary Assessments (EMA), PHQ-8 scores and log data about the usage of the ICT4D platform in the context of blended care, we set out to unveil possible causes for these different trajectories. Discussion: This work complements other studies into alternative data mining approaches to E-COMPARED trial data analysis, which are all aimed to identify clinically meaningful predictors of system use and treatment outcome. Strengths and limitations of the ILP approach given this objective will be discussed.
Keywords: Multi-relational data mining ، Internet intervention ، Moodbuster، Log data ، Ecological momentary assessment
مقاله انگلیسی
7 Omission and commission errors in network cognition and network estimation using ROC curve
اشتباه ناکافی و خطاهای کمیسیون در شناخت شبکه و برآورد شبکه با استفاده از منحنی ROC-2017
Network studies on cognitive social structures collect relational data on respondents’ direct ties and their perception of ties among all other individuals in the network. When reporting their perception networks, respondents commit two types of errors, namely, omission (false negatives) and commission (false posi tives) errors. We first assess the relationship between these two error types, and their contributions on overall respondent accuracy. Next we propose a method for estimating networks based on perceptions of a random sample of respondents from a bounded social network, which utilizes the receiver operator characteristic curve for balancing the tradeoffs between omission and commission errors.
Keywords: Network estimation | Cognitive social structures | Network sampling
مقاله انگلیسی
8 ARCPHdb: A comprehensive protein database for SF1 and SF2 helicase from archaea
ARCPHdb: یک پایگاه داده پروتئینی جامع برای خانواده هلیکاس SF1 و SF2 های آرکیا-2017
Purpose: Superfamily 1 and Superfamily 2 helicases, two of the largest helicase protein families, play vital roles in many biological processes including replication, transcription and translation. Study of helicase proteins in the model microorganisms of archaea have largely contributed to the understanding of their function, architecture and assembly. Based on a large phylogenomics approach, we have identified and classified all SF1 and SF2 protein families in ninety five sequenced archaea genomes. Here we developed an online webserver linked to a specialized protein database named ARCPHdb to provide access for SF1 and SF2 helicase families from archaea. Methods: ARCPHdb was implemented using MySQL relational database. Web interfaces were developed using Netbeans. Data were stored according to UniProt accession numbers, NCBI Ref Seq ID, PDB IDs and Entrez Databases. Results: A user-friendly interactive web interface has been developed to browse, search and download archaeal helicase protein sequences, their available 3D structure models, and related documentation available in the literature provided by ARCPHdb. The database provides direct links to matching external databases. Conclusions: The ARCPHdb is the first online database to compile all protein information on SF1 and SF2 helicase from archaea in one platform. This database provides essential resource information for all researchers interested in the field.
Keywords: Archaea | Superfamily helicase 1 | Superfamily helicase 2 | Protein database
مقاله انگلیسی
9 The HITRAN2016 Molecular Spectroscopic Database
پایگاه داده طیف سنجی مولکولی HITRAN2016-2017
This paper describes the contents of the 2016 edition of the HITRAN molecular spectroscopic compilation. The new edition replaces the previous HITRAN edition of 2012 and its updates during the intervening years. The HITRAN molecular absorption compilation is composed of five major components: the traditional line-by-line spectroscopic parameters required for high resolution radiative-transfer codes, infrared absorption cross-sections for molecules not yet amenable to representation in a line-by-line form, collision-induced absorption data, aerosol indices of refraction, and general tables such as partition sums that apply globally to the data. The new HITRAN is greatly extended in terms of accuracy, spectral coverage, additional absorption phenomena, added line-shape formalisms, and validity. Moreover, molecules, isotopologues, and perturbing gases have been added that address the issues of atmospheres beyond the Earth. Of considerable note, experimental IR cross-sections for almost 300 additional molecules important in different areas of atmospheric science have been added to the database. The compilation can be accessed through www.hitran.org. Most of the HITRAN data have now been cast into an underlying relational database structure that offers many advantages over the long-standing sequential text-based structure. The new structure empowers the user in many ways. It enables the incorporation of an extended set of fundamental parameters per transition, sophisticated line-shape formalisms, easy user-defined output formats, and very convenient searching, filtering, and plotting of data. A powerful application programming interface making use of structured query language (SQL) features for higher-level applications of HITRAN is also provided.
Keywords: HITRAN | Spectroscopic database | Molecular spectroscopy | Molecular absorption Spectroscopic line parameters | Absorption cross-sections | Collision-induced Absorption | Aerosols
مقاله انگلیسی
10 Using social network analysis to prevent money laundering
با استفاده از تجزیه و تحلیل شبکه های اجتماعی برای جلوگیری از پولشویی-2017
This research explores the opportunities for the application of network analytic techniques to prevent money laundering. We worked on real world data by analyzing the central database of a factoring company, mainly operating in Italy, over a period of 19 months. This database contained the financial operations linked to the factoring business, together with other useful information about the company clients. We propose a new approach to sort and map relational data and present predictive models – based on network metrics – to assess risk profiles of clients involved in the factoring business. We find that risk profiles can be predicted by using social network metrics. In our dataset, the most dangerous social actors deal with bigger or more frequent financial operations; they are more peripheral in the transactions network; they mediate transactions across different economic sectors and operate in riskier countries or Italian regions. Finally, to spot potential clusters of criminals, we propose a visual analysis of the tacit links existing among different companies who share the same owner or representative. Our findings show the importance of using a network-based approach when looking for suspicious financial operations and potential criminals.
Keywords: Anti-money laundering | Social network | Factoring | Fraud detection | Decision support systems
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi