دانلود و نمایش مقالات مرتبط با Synaptogenesis::صفحه 1
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت (6037997535328901 بانک ملی ناصر خنجری ) مقاله خود را دریافت کنید (تا مشکل رفع گردد). 

نتیجه جستجو - Synaptogenesis

تعداد مقالات یافته شده: 2
ردیف عنوان نوع
1 Refinement of cerebellar network organization by extracellular signaling during development
پالایش سازمان شبکه مخچه با سیگنالینگ خارج سلولی در حین توسعه-2020
The cerebellum forms regular neural network structures consisting of a few major types of neurons, such as Purkinje cells, granule cells, and molecular layer interneurons, and receives two major inputs from climbing fibers and mossy fibers. Its regular structures consist of three well-defined layers, with each type of neuron designated to a specific location and forming specific synaptic connections. During the first few weeks of postnatal development in rodents, the cerebellum goes through dynamic changes via proliferation, migration, differentiation, synaptogenesis, and maturation, to create such a network structure. The development of this organized network structure presumably relies on the communication between developing elements in the network, including not only individual neurons, but also their dendrites, axons, and synapses. Therefore, it is reasonable that extracellular signaling via synaptic transmission, secreted molecules, and cell adhesion molecules, plays important roles in cerebellar network development. Although it is not yet clear as to how overall cerebellar development is orchestrated, there is indeed accumulating lines of evidence that extracellular signaling acts toward the development of individual elements in the cerebellar networks. In this article, we introduce what we have learned from many studies regarding the extracellular signaling required for cerebellar network development, including our recent study suggesting the importance of unbiased synaptic inputs from parallel fibers
Keywords : synaptic inputs | extracellular signaling | Purkinje cells | cerebellar granule cells | molecular layer interneurons | climbing fibers
مقاله انگلیسی
2 Constructing multilayered neural networks with sparse, data-driven connectivity using biologically-inspired, complementary, homeostatic mechanisms
ساخت شبکه های عصبی چند لایه با اتصال پراکنده و داده محور با استفاده از مکانیسم های هوموستاتیک بیولوژیکی مکمل الهام گرفته -2020
The immense complexity of the brain requires that it be built and controlled by intrinsic, self-regulating mechanisms. One such mechanism, the formation of new connections via synaptogenesis, plays a central role in neuronal connectivity and, ultimately, performance. Adaptive synaptogenesis networks combine synaptogenesis, associative synaptic modification, and synaptic shedding to construct sparse networks. Here, inspired by neuroscientific observations, novel aspects of brain development are incorporated into adaptive synaptogenesis. The extensions include: (i) multiple layers, (ii) neuron survival and death based on information transmission, and (iii) bigrade growth factor signaling to control the onset of synaptogenesis in succeeding layers and to control neuron survival and death in preceding layers. Also guiding this research is the assumption that brains must achieve a compromise between good performance and low energy expenditures. Simulations of the network model demonstrate the parametric and functional control of both performance and energy expenditures, where performance is measured in terms of information loss and classification errors, and energy expenditures are assumed to be a monotonically increasing function of the number of neurons. Major insights from this study include (a) the key role a neural layer between two other layers has in controlling synaptogenesis and neuron elimination, (b) the performance and energy-savings benefits of delaying the onset of synaptogenesis in a succeeding layer, and (c) how the elimination of neurons in a preceding layer provides energy savings, code compression, and can be accomplished without significantly degrading information transfer or classification performance.
Keywords: Synaptogenesis | Apoptosis | Brain development | Energy efficient | Unsupervised learning | Neural network
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 8894 :::::::: بازدید دیروز: 0 :::::::: بازدید کل: 8894 :::::::: افراد آنلاین: 87