دانلود و نمایش مقالات مرتبط با Time::صفحه 1
بلافاصله پس از پرداخت دانلود کنید

با سلام خدمت کاربران در صورتی که با خطای سیستم پرداخت بانکی مواجه شدید از طریق کارت به کارت (6037997535328901 بانک ملی ناصر خنجری ) مقاله خود را دریافت کنید (تا مشکل رفع گردد). 

نتیجه جستجو - Time

تعداد مقالات یافته شده: 4386
ردیف عنوان نوع
1 Data Mining Strategies for Real-Time Control in New York City
استراتژی داده کاوی برای کنترل زمان واقعی در شهر نیویورک-2105
The Data Mining System (DMS) at New York City Department of Transportation (NYCDOT) mainly consists of four database systems for traffic and pedestrian/bicycle volumes, crash data, and signal timing plans as well as the Midtown in Motion (MIM) systems which are used as part of the NYCDOT Intelligent Transportation System (ITS) infrastructure. These database and control systems are operated by different units at NYCDOT as an independent database or operation system. New York City experiences heavy traffic volumes, pedestrians and cyclists in each Central Business District (CBD) area and along key arterial systems. There are consistent and urgent needs in New York City for real-time control to improve mobility and safety for all users of the street networks, and to provide a timely response and management of random incidents. Therefore, it is necessary to develop an integrated DMS for effective real-time control and active transportation management (ATM) in New York City. This paper will present new strategies for New York City suggesting the development of efficient and cost-effective DMS, involving: 1) use of new technology applications such as tablets and smartphone with Global Positioning System (GPS) and wireless communication features for data collection and reduction; 2) interface development among existing database and control systems; and 3) integrated DMS deployment with macroscopic and mesoscopic simulation models in Manhattan. This study paper also suggests a complete data mining process for real-time control with traditional static data, current real timing data from loop detectors, microwave sensors, and video cameras, and new real-time data using the GPS data. GPS data, including using taxi and bus GPS information, and smartphone applications can be obtained in all weather conditions and during anytime of the day. GPS data and smartphone application in NYCDOT DMS is discussed herein as a new concept. © 2014 The Authors. Published by Elsevier B.V. Selection and peer-review under responsibility of Elhadi M. Shakshu Keywords: Data Mining System (DMS), New York City, real-time control, active transportation management (ATM), GPS data
مقاله انگلیسی
2 Intelligent authentication of 5G healthcare devices: A survey
احراز هویت هوشمند دستگاه های مراقبت بهداشتی 5G: یک مرور-2022
The dynamic nature of wireless links and the mobility of devices connected to the Internet of Things (IoT) over fifth-generation (5G) networks (IoT-5G), on the one hand, empowers pervasive healthcare applications. On the other hand, it allows eavesdroppers and other illegitimate actors to access secret information. Due to the poor time efficiency and high computational complexity of conventional cryptographic methods and the heterogeneous technologies used, it is easy to compromise the authentication of lightweight wearable and healthcare devices. Therefore, intelligent authentication, which relies on artificial intelligence (AI), and sufficient network resources are extremely important for securing healthcare devices connected to IoT- 5G. This survey considers intelligent authentication and includes a comprehensive overview of intelligent authentication mechanisms for securing IoT-5G devices deployed in the healthcare domain. First, it presents a detailed, thoughtful, and state-of-the-art review of IoT-5G, healthcare technologies, tools, applications, research trends, challenges, opportunities, and solutions. We selected 20 technical articles from those surveyed based on their strong overlaps with IoT, 5G, healthcare, device authentication, and AI. Second, IoT-5G device authentication, radiofrequency fingerprinting, and mutual authentication are reviewed, characterized, clustered, and classified. Third, the review envisions that AI can be used to integrate the attributes of the physical layer and 5G networks to empower intelligent healthcare devices. Moreover, methods for developing intelligent authentication models using AI are presented. Finally, the future outlook and recommendations are introduced for IoT-5G healthcare applications, and recommendations for further research are presented as well. The remarkable contributions and relevance of this survey may assist the research community in understanding the research gaps and the research opportunities relating to the intelligent authentication of IoT-5G healthcare devices.
keywords: اینترنت اشیا (IoT) | امنیت اینترنت اشیا | احراز هویت دستگاه | هوش مصنوعی | امنیت مراقبت های بهداشتی | شبکه های 5g | InternetofThings(IoT) | InternetofThingssecurity | Deviceauthentication | Artificialintelligence | Healthcaresecurity | 5Gnetworks
مقاله انگلیسی
3 Intelligent context-aware fog node discovery
کشف گره مه آگاه از زمینه هوشمند-2022
Fog computing has been proposed as a mechanism to address certain issues in cloud computing such as latency, storage, network bandwidth, etc. Fog computing brings the processing, storage, and networking to the edge of the network near the edge devices, which we called fog consumers. This decreases latency, network bandwidth, and response time. Discovering the most relevant fog node, the nearest one to the fog consumers, is a critical challenge that is yet to be addressed by the research. In this study, we present the Intelligent and Distributed Fog node Discovery mechanism (IDFD) which is an intelligent approach to enable fog consumers to discover appropriate fog nodes in a context-aware manner. The proposed approach is based on the distributed fog registries between fog consumers and fog nodes that can facilitate the discovery process of fog nodes. In this study, the KNN, K-d tree, and brute force algorithms are used to discover fog nodes based on the context-aware criteria of fog nodes and fog consumers. The proposed framework is simulated using OMNET++, and the performance of the proposed algorithms is compared based on performance metrics and execution time. The accuracy and execution time are the major points of consideration in the selection of an optimal fog search algorithm. The experiment results show that the KNN and K-d tree algorithms achieve the same accuracy results of 95 %. However, the K-d tree method takes less time to find the nearest fog nodes than KNN and brute force. Thus, the K-d tree is selected as the fog search algorithm in the IDFD to discover the nearest fog nodes very efficiently and quickly.
keywords: Fog node | Discovery | Context-aware | Intelligent | Fog node discovery
مقاله انگلیسی
4 Deep Reinforcement Learning With Quantum-Inspired Experience Replay
یادگیری تقویتی عمیق با تکرار تجربه کوانتومی-2022
In this article, a novel training paradigm inspired by quantum computation is proposed for deep reinforcement learning (DRL) with experience replay. In contrast to the traditional experience replay mechanism in DRL, the proposed DRL with quantum-inspired experience replay (DRL-QER) adaptively chooses experiences from the replay buffer according to the complexity and the replayed times of each experience (also called transition), to achieve a balance between exploration and exploitation. In DRL-QER, transitions are first formulated in quantum representations and then the preparation operation and depreciation operation are performed on the transitions. In this process, the preparation operation reflects the relationship between the temporal-difference errors (TD-errors) and the importance of the experiences, while the depreciation operation is taken into account to ensure the diversity of the transitions. The experimental results on Atari 2600 games show that DRL-QER outperforms state-of-the-art algorithms, such as DRL-PER and DCRL on most of these games with improved training efficiency and is also applicable to such memory-based DRL approaches as double network and dueling network.
Index Terms: Deep reinforcement learning (DRL) | quantum computation | quantum-inspired experience replay (QER) | quantum reinforcement learning.
مقاله انگلیسی
5 Internet of Things-enabled Passive Contact Tracing in Smart Cities
ردیابی تماس غیرفعال با قابلیت اینترنت اشیا در شهرهای هوشمند-2022
Contact tracing has been proven an essential practice during pandemic outbreaks and is a critical non-pharmaceutical intervention to reduce mortality rates. While traditional con- tact tracing approaches are gradually being replaced by peer-to-peer smartphone-based systems, the new applications tend to ignore the Internet-of-Things (IoT) ecosystem that is steadily growing in smart city environments. This work presents a contact tracing frame- work that logs smart space users’ co-existence using IoT devices as reference anchors. The design is non-intrusive as it relies on passive wireless interactions between each user’s carried equipment (e.g., smartphone, wearable, proximity card) with an IoT device by uti- lizing received signal strength indicators (RSSI). The proposed framework can log the iden- tities for the interacting pair, their estimated distance, and the overlapping time duration. Also, we propose a machine learning-based infection risk classification method to char- acterize each interaction that relies on RSSI-based attributes and contact details. Finally, the proposed contact tracing framework’s performance is evaluated through a real-world case study of actual wireless interactions between users and IoT devices through Bluetooth Low Energy advertising. The results demonstrate the system’s capability to accurately cap- ture contact between mobile users and assess their infection risk provided adequate model training over time. © 2021 Elsevier B.V. All rights reserved.
keywords: بلوتوث کم انرژی | ردیابی تماس | اینترنت اشیا | طبقه بندی خطر عفونت | Bluetooth Low Energy | Contact Tracing | Internet of Things | Infection Risk Classification
مقاله انگلیسی
6 Design of an Integrated Bell-State Analyzer on a Thin-Film Lithium Niobate Platform
طراحی یک آنالایزر حالت زنگ یکپارچه بر روی بستر نازک لیتیوم نیوبات-2022
Trapped ions are excellent candidates for quantum computing and quantum networks because of their long coherence times, ability to generate entangled photons as well as high fidelity single- and two-qubit gates. To scale up trapped ion quantum computing, we need a Bell-state analyzer on a reconfigurable platform that can herald high fidelity entanglement between ions. In this work, we design a photonic Bell-state analyzer on a reconfigurable thin-film lithium niobate platform for polarization-encoded qubits.We optimize the device to achieve high fidelity entanglement between two trapped ions and find >99% fidelity. Apart from that, the directional coupler used in our design can achieve any polarization-independent power splitting ratio which can have a rich variety of applications in the integrated photonic technology. The proposed device can scale up trapped ion quantum computing as well as other optically active spin qubits, such as color centers in diamond, quantum dots, and rare-earth ions.
Index Terms: Bell-state analyzer | thin-film lithium niobate | scalable quantum computing | trapped ions | entanglement | polarization qubits | polarization-independent directional coupler.
مقاله انگلیسی
7 Development of an Undergraduate Quantum Engineering Degree
توسعه یک مدرک کارشناسی مهندسی کوانتوم-2022
Quantum computing, communications, sensing, and simulations are radically transformative technologies, with great potential to impact industries and economies. Worldwide, national governments, industries, and universities are moving to create a new class of workforce—the Quantum Engineers. Demand for such engineers is predicted to be in the tens of thousands within a five-year timescale, far exceeding the rate at which the world’s universities can produce Ph.D. graduates in the discipline. How best to train this next generation of engineers is currently a matter of debate. Quantum mechanics—long a pillar of traditional physics undergraduate degrees—must now be merged with traditional engineering offerings. This article discusses the history, development, and the first year of operation of the world’s first undergraduate degree in quantum engineering to be grown out of an engineering curriculum. The main purpose of this article is to inform the wider discussion, now being held by many institutions worldwide, on how best to formally educate the Quantum Engineer.
INDEX TERMS: Degree | education | engineering | quantum | undergraduate.
مقاله انگلیسی
8 Discriminating Quantum States in the Presence of a Deutschian CTC: A Simulation Analysis
حالت های کوانتومی متمایز در حضور CTC Deutschian: یک تحلیل شبیه سازی-2022
In an article published in 2009, Brun et al. proved that in the presence of a “Deutschian” closed timelike curve, one can map K distinct nonorthogonal states (hereafter, input set) to the standard orthonormal basis of a K-dimensional state space. To implement this result, the authors proposed a quantum circuit that includes, among SWAP gates, a fixed set of controlled operators (boxes) and an algorithm for determining the unitary transformations carried out by such boxes. To our knowledge, what is still missing to complete the picture is an analysis evaluating the performance of the aforementioned circuit from an engineering perspective. The objective of this article is, therefore, to address this gap through an in-depth simulation analysis, which exploits the approach proposed by Brun et al. in 2017. This approach relies on multiple copies of an input state, multiple iterations of the circuit until a fixed point is (almost) reached. The performance analysis led us to a number of findings. First, the number of iterations is significantly high even if the number of states to be discriminated against is small, such as 2 or 3. Second, we envision that such a number may be shortened as there is plenty of room to improve the unitary transformation acting in the aforementioned controlled boxes. Third, we also revealed a relationship between the number of iterations required to get close to the fixed point and the Chernoff limit of the input set used: the higher the Chernoff bound, the smaller the number of iterations. A comparison, although partial, with another quantum circuit discriminating the nonorthogonal states, proposed by Nareddula et al. in 2018, is carried out and differences are highlighted.
INDEX TERMS: Benchmarking and performance characterization | classical simulation of quantum systems.
مقاله انگلیسی
9 DQRA: Deep Quantum Routing Agent for Entanglement Routing in Quantum Networks
DQRA: عامل مسیریابی کوانتومی عمیق برای مسیریابی درهم تنیده در شبکه های کوانتومی-2022
Quantum routing plays a key role in the development of the next-generation network system. In particular, an entangled routing path can be constructed with the help of quantum entanglement and swapping among particles (e.g., photons) associated with nodes in the network. From another side of computing, machine learning has achieved numerous breakthrough successes in various application domains, including networking. Despite its advantages and capabilities, machine learning is not as much utilized in quantum networking as in other areas. To bridge this gap, in this article, we propose a novel quantum routing model for quantum networks that employs machine learning architectures to construct the routing path for the maximum number of demands (source–destination pairs) within a time window. Specifically, we present a deep reinforcement routing scheme that is called Deep Quantum Routing Agent (DQRA). In short, DQRA utilizes an empirically designed deep neural network that observes the current network states to accommodate the network’s demands, which are then connected by a qubit-preserved shortest path algorithm. The training process of DQRA is guided by a reward function that aims toward maximizing the number of accommodated requests in each routing window. Our experiment study shows that, on average, DQRA is able to maintain a rate of successfully routed requests at above 80% in a qubit-limited grid network and approximately 60% in extreme conditions, i.e., each node can be repeater exactly once in a window. Furthermore, we show that the model complexity and the computational time of DQRA are polynomial in terms of the sizes of the quantum networks.
INDEX TERMS: Deep learning | deep reinforcement learning (DRL) | machine learning | next-generation network | quantum network routing | quantum networks.
مقاله انگلیسی
10 Efficient Construction of a Control Modular Adder on a Carry-Lookahead Adder Using Relative-Phase Toffoli Gates
ساخت کارآمد یک جمع کننده ماژولار کنترلی بر روی جمع کننده Carry-Lookahead با استفاده از گیت های توفولی فاز نسبی-2022
Control modular addition is a core arithmetic function, and we must consider the computational cost for actual quantum computers to realize efficient implementation. To achieve a low computational cost in a control modular adder, we focus on minimizing KQ (where K is the number of logical qubits required by the algorithm, and Q is the elementary gate step), defined by the product of the number of qubits and the depth of the circuit. In this article, we construct an efficient control modular adder with small KQ by using relative-phase Toffoli gates in two major types of quantum computers: fault-tolerant quantum computers (FTQ) on the logical layer and noisy intermediate-scale quantum computers (NISQ). We give a more efficient construction compared with Van Meter and Itoh’s, based on a carry-lookahead adder. In FTQ, T gates incur heavy cost due to distillation, which fabricates ancilla for running T gates with high accuracy but consumes a lot of especially prepared ancilla qubits and a lot of time. Thus, we must reduce the number of T gates. We propose a new control modular adder that uses only 20% of the number of T gates of the original. Moreover, when we take distillation into consideration, we find that we minimize KQT (the product of the number of qubits and T-depth) by running (n/√log n) T gates simultaneously. In NISQ, cnot gates are the major error source. We propose a new control modular adder that uses only 35% of the number of cnotgates of the original. Moreover, we show that the KQCX (the product of the number of qubits and cnot-depth) of our circuit is 38% of the original. Thus, we realize an efficient control modular adder, improving prospects for the efficient execution of arithmetic in quantum computers.
INDEX TERMS: Carry-lookahead adder | control modular adder | fault-tolerant quantum computers (FTQ) | noisy intermediate-scale quantum computers (NISQ) | Shor’s algorithm.
مقاله انگلیسی
rss مقالات ترجمه شده rss مقالات انگلیسی rss کتاب های انگلیسی rss مقالات آموزشی
logo-samandehi
بازدید امروز: 3083 :::::::: بازدید دیروز: 3084 :::::::: بازدید کل: 6167 :::::::: افراد آنلاین: 65